73 research outputs found

    Marrow versus Blood-Derived Stem Cell Grafts for Allogeneic Transplantation from Unrelated Donors in Patients with Active Myeloid Leukemia or Myelodysplasia

    Get PDF
    Peripheral blood stem cells (PBSCs) are increasingly used as the graft source in allogeneic hematopoietic cell transplantation. We compared long-term outcome after unrelated donor transplantation of 85 consecutive patients with acute myelogenous leukemia or myelodysplastic syndrome regarding disease status (early disease [CR1, refractory anemia); n = 25 and advanced/active disease [>CR1, >refractory anemia]; n = 60) who were treated with conventional conditioning regimens followed by bone marrow (BM) or PBSC grafts. Graft-versus-host disease prophylaxis consisted mainly of cyclosporine A, short-course methotrexate, and anti-T-lymphocyte globulin. After a median follow-up of 118 months (68-174), the 10-year event-free survival rate after peripheral blood stem cell transplantation (PBSCT) was 54.8% (95% confidence interval [CI], 39.7%-69.8%), and after bone marrow transplantation (BMT), it was 27.9% (14.5%-41.3%; P < .004). In the advanced/active disease group, the 10-year event-free survival rate after PBSCT was 50% (30.8%-69.2%), and after BMT, it was 23.5% (9.3%-37.8%; P < .007). Non relapse mortality was less after PBSCT than BMT (14.3% vs 30.2%), respectively. In multivariate Cox regression analysis, PBSCT showed a better overall survival (OS; hazard ratio [HR], 0.43; 95% CI, 0.23-0.79; P = .007) compared to BMT; unfavorable/unknown prognostic impact cytogenetic abnormalities were an adverse factor for all patients (HR, 2.202; 95% CI, 1.19-4.06; P = .011). In patients with advanced disease, the use of PBSCs showed a significant favorable outcome via multivariate analysis (HR, 0.49; 95% CI, 0.24-0.99; P = .046). Outcome of acute myelogenous leukemia/myelodysplastic syndrome after unrelated hematopoietic cell transplantation is adversely affected by cytogenetic abnormalities and state of remission at hematopoietic cell transplantation. PBSC as a graft source has a significant favorable influence on survival

    Ex vivo propagation in a novel 3D high-throughput co-culture system for multiple myeloma

    Get PDF
    PURPOSE: Multiple myeloma (MM) remains an incurable hematologic malignancy which ultimately develops drug resistance and evades treatment. Despite substantial therapeutic advances over the past years, the clinical failure rate of preclinically promising anti-MM drugs remains substantial. More realistic in vitro models are thus required to better predict clinical efficacy of a preclinically active compound. METHODS: Here, we report on the establishment of a conical agarose 3D co-culture platform for the preclinical propagation of primary MM cells ex vivo. Cell growth was compared to yet established 2D and liquid overlay systems. MM cell lines (MMCL: RPMI-8226, U266, OPM-2) and primary patient specimens were tested. Drug sensitivity was examined by exploring the cytotoxic effect of bortezomib and the deubiquitinase inhibitor auranofin under various conditions. RESULTS: In contrast to 2D and liquid overlay, cell proliferation in the 3D array followed a sigmoidal curve characterized by an initial growth delay but more durable proliferation of MMCL over 12 days of culture. Primary MM specimens did not expand in ex vivo monoculture, but required co-culture support by a human stromal cell line (HS-5, MSP-1). HS-5 induced a \u3e fivefold increase in cluster volume and maintained long-term viability of primary MM cells for up to 21 days. Bortezomib and auranofin induced less cytotoxicity under 3D vs. 2D condition and in co- vs. monoculture, respectively. CONCLUSIONS: This study introduces a novel model that is capable of long-term propagation and drug testing of primary MM specimens ex vivo overcoming some of the pitfalls of currently available in vitro models

    A concise revised Myeloma Comorbidity Index as a valid prognostic instrument in a large cohort of 801 multiple myeloma patients

    Get PDF
    With growing numbers of elderly multiple myeloma patients, reliable tools to assess their vulnerability are required. The objective of the analysis herein was to develop and validate an easy to use myeloma risk score (revised Myeloma Comorbidity Index) that allows for risk prediction of overall survival and progression-free survival differences in a large patient cohort. We conducted a comprehensive comorbidity, frailty and disability evaluation in 801 consecutive myeloma patients, including comorbidity risks obtained at diagnosis. The cohort was examined within a training and validation set. Multivariate analysis determined renal, lung and Karnofsky Performance Status impairment, frailty and age as significant risks for overall survival. These were combined in a weighted revised Myeloma Comorbidity Index, allowing for the identification of fit (revised Myeloma Comorbidity Index ≤3 [n=247, 30.8%]), intermediate-fit (revised Myeloma Comorbidity Index 4-6 [n=446, 55.7%]) and frail patients (revised Myeloma Comorbidity Index >6 [n=108, 13.5%]): these subgroups, confirmed validation analysis, showed median overall survival rates of 10.1, 4.4 and 1.2 years, respectively. The revised Myeloma Comorbidity Index was compared to other commonly used comorbidity indices (Charlson Comorbidity Index, Hematopoietic Cell Transplantation-Specific Comorbidity Index, Kaplan-Feinstein Index): if each were divided in risk groups based on 25% and 75% quartiles, highest hazard ratios, best prediction and Brier scores were achieved with the revised Myeloma Comorbidity Index. The advantages of the revised Myeloma Comorbidity Index include its accurate assessment of patients' physical conditions and simple clinical applicability. We propose the revised Myeloma Comorbidity Index to be tested with the "reference" International Myeloma Working Group frailty score in multicenter analyses and future clinical trials. The study was registered at the German Clinical Trials Register (DRKS-00003868)

    A concise revised myeloma comorbidity index as a valid prognostic instrument in a large cohort of 801 multiple myeloma patients

    Get PDF
    With growing numbers of elderly multiple myeloma patients, reliable tools to assess their vulnerability are required. The objective of the analysis herein was to develop and validate an easy to use myeloma risk score (revised Myeloma Comorbidity Index) that allows for risk prediction of overall survival and progression-free survival differences in a large patient cohort. We conducted a comprehensive comorbidity, frailty and disability evaluation in 801 consecutive myeloma patients, including comorbidity risks obtained at diagnosis. The cohort was examined within a training and validation set. Multivariate analysis determined renal, lung and Karnofsky Performance Status impairment, frailty and age as significant risks for overall survival. These were combined in a weighted revised Myeloma Comorbidity Index, allowing for the identification of fit (revised Myeloma Comorbidity Index ≤3 [n=247, 30.8%]), intermediate-fit (revised Myeloma Comorbidity Index 4-6 [n=446, 55.7%]) and frail patients (revised Myeloma Comorbidity Index >6 [n=108, 13.5%]): these subgroups, confirmed via validation analysis, showed median overall survival rates of 10.1, 4.4 and 1.2 years, respectively. The revised Myeloma Comorbidity Index was compared to other commonly used comorbidity indices (Charlson Comorbidity Index, Hematopoietic Cell Transplantation-Specific Comorbidity Index, Kaplan-Feinstein Index): if each were divided in risk groups based on 25% and 75% quartiles, highest hazard ratios, best prediction and Brier scores were achieved with the revised Myeloma Comorbidity Index. The advantages of the revised Myeloma Comorbidity Index include its accurate assessment of patients' physical conditions and simple clinical applicability. We propose the revised Myeloma Comorbidity Index to be tested with the “reference” International Myeloma Working Group frailty score in multicenter analyses and future clinical trials

    Genomic CDKN2A/2B deletions in adult Ph+ ALL are adverse despite allogeneic stem cell transplantation

    Get PDF
    We investigated the role of copy number alterations to refine risk stratification in adult Philadelphia chromosome positive (Ph)+ ALL treated with tyrosine kinase inhibitors (TKI) and allogeneic stem cell transplantation (aSCT). 97 Ph+ ALL patients (median age 41 years, range 18-64 years) within the prospective multicenter GMALL studies 06/99 (n=8) and 07/2003 (n=89) were analysed. All patients received TKI and aSCT in first complete remission (CR1). Copy number analysis was performed with SNP arrays and validated by multiplex ligation-dependent probe amplification (MLPA). The frequencies of recurrently deleted genes were: IKZF1, 76%, CDKN2A/2B, 45%, PAX5, 43%, BTG1, 18%, EBF1, 13%, ETV6, 5%, RB, 14%. In univariate analyses, the presence of CDKN2A/2B deletions had a negative impact on all endpoints: overall survival (p=0.023), disease free survival (p=0.012) and remission duration (p=0.036). The negative predictive value of CDKN2A/2B deletions was retained in multivariable analysis along with other factors such as timing of TKI therapy, intensity of conditioning, achieving remission after induction phase I and BTG1 deletions. We therefore conclude that acquired genomic CDKN2A/2B deletions identify a subgroup of Ph+ ALL patients, who have an inferior prognosis despite aSCT in CR1. Their poor outcome was attributable primarily to a high relapse rate after aSCT

    Allogeneic Stem Cell Transplantation in Multiple Myeloma

    No full text
    The development of new inhibitory and immunological agents and combination therapies significantly improved response rates and survival of patients diagnosed with multiple myeloma (MM) in the last decade, but the disease is still considered to be incurable by current standards and the prognosis is dismal especially in high-risk groups and in relapsed and/or refractory patients. Allogeneic hematopoietic stem cell transplantation (allo-SCT) may enable long-term survival and even cure for individual patients via an immune-mediated graft-versus-myeloma (GvM) effect, but remains controversial due to relevant transplant-related risks, particularly immunosuppression and graft-versus-host disease, and a substantial non-relapse mortality. The decreased risk of disease progression may outweigh this treatment-related toxicity for young, fit patients in high-risk constellations with otherwise often poor long-term prognosis. Here, allo-SCT should be considered within clinical trials in first-line as part of a tandem approach to separate myeloablation achieved by high-dose chemotherapy with autologous SCT, and following allo-SCT with a reduced-intensity conditioning to minimize treatment-related organ toxicities but allow GvM effect. Our review aims to better define the role of allo-SCT in myeloma treatment particularly in the context of new immunomodulatory approaches

    Two cases of carfilzomib‐induced thrombotic microangiopathy successfully treated with Eculizumab in multiple myeloma

    No full text
    Background!#!Treatment with proteasome inhibitors like carfilzomib in patients with multiple myeloma (MM) can induce thrombotic microangiopathy (TMA) characterized by neurological symptoms, acute kidney injury, hemolysis and thrombocytopenia. Successful treatment with the monoclonal antibody eculizumab was described for these patients, but reports of ideal management and definitive treatment protocols are lacking.!##!Case presentation!#!The first case describes a 43-years-old IgG-kappa-MM patient that developed TMA during the first course of carfilzomib-lenalidomide-dexamethasone (KRd) consolidation after autologous stem cell transplantation (ASCT). In the second case, a 59-years-old IgG-kappa-MM patient showed late-onset TMA during the fourth and last cycle of elotuzumab-KRd consolidation within the DSMM XVII study of the German study group MM (DSMM; clinicalTrials.gov Identifier: NCT03948035). Concurrently, he suffered from influenza A/B infection. Both patients had a high TMA-index for a poor prognosis of TMA. Therapeutically, in both patients plasma exchange (TPE) was initiated as soon as TMA was diagnosed. In patient #1, dialysis became necessary. For both patients, only when the complement inhibitor eculizumab was administered, kidney function and blood values impressively improved.!##!Conclusion!#!In this small case series, two patients with MM developed TMA due to carfilzomib treatment (CFZ-TMA), the second patient as a late-onset form. Even though TMA could have been elicited by influenza in the second patient and occurred after ASCT in both patients, with cases of TMA post-transplantation in MM being described, a relation of TMA and carfilzomib treatment was most likely. In both patients, treatment with eculizumab over two months efficiently treated TMA without recurrence and with both patients remaining responsive months after TMA onset. Taken together, we describe two cases of TMA in MM patients on carfilzomib-combination treatment, showing similar courses of this severe adverse reaction, with good responses to two months of eculizumab treatment

    The 3' Untranslated Region of the Cyclin B mRNA Is Not Sufficient to Enhance the Synthesis of Cyclin B during a Mitotic Block in Human Cells

    Get PDF
    <div><p>Antimitotic agents are frequently used to treat solid tumors and hematologic malignancies. However, one major limitation of antimitotic approaches is mitotic slippage, which is driven by slow degradation of cyclin B during a mitotic block. The extent to which cyclin B levels decline is proposed to be governed by an equilibrium between cyclin B synthesis and degradation. It was recently shown that the 3' untranslated region (UTR) of the murine cyclin B mRNA contributes to the synthesis of cyclin B during mitosis in murine cells. Using a novel live-cell imaging-based technique allowing us to study synthesis and degradation of cyclin B simultaneously at the single cell level, we tested here the role of the human cyclin B 3'UTR in regulating cyclin B synthesis during mitosis in human cells. We observed that the cyclin B 3'UTR was not sufficient to enhance cyclin B synthesis in human U2Os, HeLa or hTERT RPE-1 cells. A better understanding of how the equilibrium of cyclin B is regulated in mitosis may contribute to the development of improved therapeutic approaches to prevent mitotic slippage in cancer cells treated with antimitotic agents.</p> </div
    corecore