3 research outputs found

    Phosphatidylethanolamine critically supports internalization of cell-penetrating protein C inhibitor

    Get PDF
    Although their contribution remains unclear, lipids may facilitate noncanonical routes of protein internalization into cells such as those used by cell-penetrating proteins. We show that protein C inhibitor (PCI), a serine protease inhibitor (serpin), rapidly transverses the plasma membrane, which persists at low temperatures and enables its nuclear targeting in vitro and in vivo. Cell membrane translocation of PCI necessarily requires phosphatidylethanolamine (PE). In parallel, PCI acts as a lipid transferase for PE. The internalized serpin promotes phagocytosis of bacteria, thus suggesting a function in host defense. Membrane insertion of PCI depends on the conical shape of PE and is associated with the formation of restricted aqueous compartments within the membrane. Gain- and loss-of-function mutations indicate that the transmembrane passage of PCI requires a branched cavity between its helices H and D, which, according to docking studies, precisely accommodates PE. Our findings show that its specific shape enables cell surface PE to drive plasma membrane translocation of cell-penetrating PCI

    Interleukin-13 Overexpression by Tax Transactivation: a Potential Autocrine Stimulus in Human T-Cell Leukemia Virus-Infected Lymphocytes

    No full text
    The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein induces growth transformation and is critical for the pathogenesis of the HTLV-1-induced adult T-cell leukemia (ATL). It stimulates the cell cycle and transactivates cellular genes. Here we show that the expression of interleukin-13 (IL-13) is upregulated as a consequence of Tax in HTLV-1-transformed T cells and ATL-derived cultures. IL-13 exerts proliferative and antiapoptotic functions and is linked to leukemogenesis, since it stimulates Hodgkin lymphoma cells by an autocrine mechanism. Overexpression of IL-13 RNA and protein was confirmed in HTLV-1-positive and Tax-transformed cells. Induction of endogenous IL-13 levels in tax-transfected Jurkat cells and in conditional Tax-expressing transformed T lymphocytes suggested that Tax can replace signals required for IL-13 synthesis. For functional analysis, the IL-13 promoter and deletion variants were cloned into luciferase reporter plasmids. Experiments with transfected human T lymphocytes revealed a 16-fold stimulation of the IL-13 promoter by Tax. Experiments with Tax mutants indicated that none of the classical transactivation pathways (SRF, CREB, and NF-κB) is sufficient for the transactivation; at least two different Tax functions are required for full transactivation. The IL-13 promoter is stimulated via two elements; one is a NF-AT binding P element, and the other is a putative AP-1 site. The following observations suggest that IL-13 may stimulate HTLV-1-transformed cells by an autocrine mechanism: (i) the HTLV-1-transformed cells express the IL-13 receptor on their surface, and (ii) STAT6, a downstream effector of IL-13 signaling, is constitutively activated. Thus, in summary, Tax, by transactivating the promoter, induces IL-13 overexpression that possibly leads to an autocrine stimulation of HTLV-1-infected cells
    corecore