306 research outputs found
Cell segmentation of in situ transcriptomics data using signed graph partitioning
The locations of different mRNA molecules can be revealed by multiplexed in
situ RNA detection. By assigning detected mRNA molecules to individual cells,
it is possible to identify many different cell types in parallel. This in turn
enables investigation of the spatial cellular architecture in tissue, which is
crucial for furthering our understanding of biological processes and diseases.
However, cell typing typically depends on the segmentation of cell nuclei,
which is often done based on images of a DNA stain, such as DAPI. Limiting cell
definition to a nuclear stain makes it fundamentally difficult to determine
accurate cell borders, and thereby also difficult to assign mRNA molecules to
the correct cell. As such, we have developed a computational tool that segments
cells solely based on the local composition of mRNA molecules. First, a small
neural network is trained to compute attractive and repulsive edges between
pairs of mRNA molecules. The signed graph is then partitioned by a mutex
watershed into components corresponding to different cells. We evaluated our
method on two publicly available datasets and compared it against the current
state-of-the-art and older baselines. We conclude that combining neural
networks with combinatorial optimization is a promising approach for cell
segmentation of in situ transcriptomics data.Comment: Accepted at GbRPR 2023: Graph-Based Representations in Pattern
Recognitio
Transcriptome-supervised classification of tissue morphology using deep learning
Deep learning has proven to successfully learn variations in tissue and cell
morphology. Training of such models typically relies on expensive manual
annotations. Here we conjecture that spatially resolved gene expression, e.i.,
the transcriptome, can be used as an alternative to manual annotations. In
particular, we trained five convolutional neural networks with patches of
different size extracted from locations defined by spatially resolved gene
expression. The network is trained to classify tissue morphology related to two
different genes, general tissue, as well as background, on an image of
fluorescence stained nuclei in a mouse brain coronal section. Performance is
evaluated on an independent tissue section from a different mouse brain,
reaching an average Dice score of 0.51. Results may indicate that novel
techniques for spatially resolved transcriptomics together with deep learning
may provide a unique and unbiased way to find genotype-phenotype relationships.Comment: Accepted for publication at IEEE International Symposium on
Biomedical Imaging (ISBI) 202
Recommended from our members
High-throughput hyperdimensional vertebrate phenotyping
Most gene mutations and biologically active molecules cause complex responses in animals that cannot be predicted by cell culture models. Yet animal studies remain too slow and their analyses are often limited to only a few readouts. Here we demonstrate high-throughput optical projection tomography with micrometer resolution and hyperdimensional screening of entire vertebrates in tens of seconds using a simple fluidic system. Hundreds of independent morphological features and complex phenotypes are automatically captured in three dimensions with unprecedented speed and detail in semi-transparent zebrafish larvae. By clustering quantitative phenotypic signatures, we can detect and classify even subtle alterations in many biological processes simultaneously. We term our approach hyperdimensional in vivo phenotyping (HIP). To illustrate the power of HIP, we have analyzed the effects of several classes of teratogens on cartilage formation using 200 independent morphological measurements and identified similarities and differences that correlate well with their known mechanisms of actions in mammals
High-throughput hyperdimensional vertebrate phenotyping
Most gene mutations and biologically active molecules cause complex responses in animals that cannot be predicted by cell culture models. Yet animal studies remain too slow and their analyses are often limited to only a few readouts. Here we demonstrate high-throughput optical projection tomography with micrometre resolution and hyperdimensional screening of entire vertebrates in tens of seconds using a simple fluidic system. Hundreds of independent morphological features and complex phenotypes are automatically captured in three dimensions with unprecedented speed and detail in semitransparent zebrafish larvae. By clustering quantitative phenotypic signatures, we can detect and classify even subtle alterations in many biological processes simultaneously. We term our approach hyperdimensional in vivo phenotyping. To illustrate the power of hyperdimensional in vivo phenotyping, we have analysed the effects of several classes of teratogens on cartilage formation using 200 independent morphological measurements, and identified similarities and differences that correlate well with their known mechanisms of actions in mammals.National Institutes of Health (U.S.) (NIH Transformative Research Award (R01 NS073127))National Institutes of Health (U.S.) (NIH (R01 GM095672)National Institutes of Health (U.S.) (NIH Director’s New Innovator award (1-DP2-OD002989))Howard Hughes Medical Institute (International Student Fellowship)Broad Institute of MIT and Harvard (SPARC grant)David & Lucile Packard Foundation (Award in Science and Engineering
Pseudomonas aeruginosa Disrupts Caenorhabditis elegans Iron Homeostasis, Causing a Hypoxic Response and Death
SummaryThe opportunistic pathogen Pseudomonas aeruginosa causes serious human infections, but effective treatments and the mechanisms mediating pathogenesis remain elusive. Caenorhabditis elegans shares innate immune pathways with humans, making it invaluable to investigate infection. To determine how P. aeruginosa disrupts host biology, we studied how P. aeruginosa kills C. elegans in a liquid-based pathogenesis model. We found that P. aeruginosa-mediated killing does not require quorum-sensing pathways or host colonization. A chemical genetic screen revealed that iron chelators alleviate P. aeruginosa-mediated killing. Consistent with a role for iron in P. aeruginosa pathogenesis, the bacterial siderophore pyoverdin was required for virulence and was sufficient to induce a hypoxic response and death in the absence of bacteria. Loss of the C. elegans hypoxia-inducing factor HIF-1, which regulates iron homeostasis, exacerbated P. aeruginosa pathogenesis, further linking hypoxia and killing. As pyoverdin is indispensable for virulence in mice, pyoverdin-mediated hypoxia is likely to be relevant in human pathogenesis
DeadEasy Mito-Glia: Automatic Counting of Mitotic Cells and Glial Cells in Drosophila
Cell number changes during normal development, and in disease (e.g., neurodegeneration, cancer). Many genes affect cell number, thus functional genetic analysis frequently requires analysis of cell number alterations upon loss of function mutations or in gain of function experiments. Drosophila is a most powerful model organism to investigate the function of genes involved in development or disease in vivo. Image processing and pattern recognition techniques can be used to extract information from microscopy images to quantify automatically distinct cellular features, but these methods are still not very extended in this model organism. Thus cellular quantification is often carried out manually, which is laborious, tedious, error prone or humanly unfeasible. Here, we present DeadEasy Mito-Glia, an image processing method to count automatically the number of mitotic cells labelled with anti-phospho-histone H3 and of glial cells labelled with anti-Repo in Drosophila embryos. This programme belongs to the DeadEasy suite of which we have previously developed versions to count apoptotic cells and neuronal nuclei. Having separate programmes is paramount for accuracy. DeadEasy Mito-Glia is very easy to use, fast, objective and very accurate when counting dividing cells and glial cells labelled with a nuclear marker. Although this method has been validated for Drosophila embryos, we provide an interactive window for biologists to easily extend its application to other nuclear markers and other sample types. DeadEasy MitoGlia is freely available as an ImageJ plug-in, it increases the repertoire of tools for in vivo genetic analysis, and it will be of interest to a broad community of developmental, cancer and neuro-biologists
Morphological Features Extracted by AI Associated with Spatial Transcriptomics in Prostate Cancer
Prostate cancer is a common cancer type in men, yet some of its traits are still under-explored. One reason for this is high molecular and morphological heterogeneity. The purpose of this study was to develop a method to gain new insights into the connection between morphological changes and underlying molecular patterns. We used artificial intelligence (AI) to analyze the morphology of seven hematoxylin and eosin (H&E)-stained prostatectomy slides from a patient with multi-focal prostate cancer. We also paired the slides with spatially resolved expression for thousands of genes obtained by a novel spatial transcriptomics (ST) technique. As both spaces are highly dimensional, we focused on dimensionality reduction before seeking associations between them. Consequently, we extracted morphological features from H&E images using an ensemble of pre-trained convolutional neural networks and proposed a workflow for dimensionality reduction. To summarize the ST data into genetic profiles, we used a previously proposed factor analysis. We found that the regions were automatically defined, outlined by unsupervised clustering, associated with independent manual annotations, in some cases, finding further relevant subdivisions. The morphological patterns were also correlated with molecular profiles and could predict the spatial variation of individual genes. This novel approach enables flexible unsupervised studies relating morphological and genetic heterogeneity using AI to be carried out
- …