13 research outputs found
Towards a dynamic assessment of raw materials criticality: linking agent-based demand--with material flow supply modelling approaches.
Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a 'snapshot' of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies
Towards a More Sustainable Use of Scarce Metals: A Review of Intervention Options along the Metals Life Cycle
In the past few decades, geochemically scarce metals have become increasingly relevant for emerging technologies in domains such as energy supply and storage, information and communication, lighting or transportation, which are regarded as cornerstones in the transition towards a sustainable post-fossil society. Accordingly, the supply risks of scarce metals and possible interventions towards their more sustainable use have been subject to an intense debate in recent studies. In this article, we integrate proposed intervention options into a generic life cycle framework, taking into account issues related to knowledge provision and to the institutional setting. As a result, we obtain a landscape of intervention fields that will have to be further specified to more specific intervention profiles for scarce metals or metals families. The envisioned profiles are expected to have the potential to reduce action contingency and to contribute to meeting the sustainability claims often associated with emerging technologies
Sustainable governance of scarce metals: The case of lithium
Minerals and metals are finite resources, and recent evidence suggests that for many, primary production is becoming more difficult and more expensive. Yet these resources are fundamentally important for society-they support many critical services like infrastructure, telecommunications and energy generation. A continued reliance on minerals and metals as service providers in modern society requires dedicated and concerted governance in relation to production, use, reuse and recycling. Lithium provides a good example to explore possible sustainable governance strategies. Lithium is a geochemically scarce metal (being found in a wide range of natural systems, but in low concentrations that are difficult to extract), yet recent studies suggest increasing future demand, particularly to supply the lithium in lithium-ion batteries, which are used in a wide variety of modern personal and commercial technologies. This paper explores interventions for sustainable governance and handling of lithium for two different supply and demand contexts: Australia as a net lithium producer and Switzerland as a net lithium consumer. It focuses particularly on possible nation-specific issues for sustainable governance in these two countries' contexts, and links these to the global lithium supply chain and demand scenarios. The article concludes that innovative business models, like 'servicizing' the lithium value chain, would hold sustainable governance advantages for both producer and consumer countries. © 2013 Elsevier B.V