30,601 research outputs found
Mathematical model of a serine integrase-controlled toggle switch with a single input
Dual-state genetic switches that can change their state in response to input signals can be used in synthetic biology to encode memory and control gene expression. A transcriptional toggle switch (TTS), with two mutually repressing transcription regulators, was previously used for switching between two expression states. In other studies, serine integrases have been used to control DNA inversion switches that can alternate between two different states. Both of these switches use two different inputs to switch ON or OFF. Here, we use mathematical modelling to design a robust one-input binary switch, which combines a TTS with a DNA inversion switch. This combined circuit switches between the two states every time it receives a pulse of a single-input signal. The robustness of the switch is based on the bistability of its TTS, while integrase recombination allows single-input control. Unidirectional integrase-RDF-mediated recombination is provided by a recently developed integrase-RDF fusion protein. We show that the switch is stable against parameter variations and molecular noise, making it a promising candidate for further use as a basic element of binary counting devices
Boundary conditions for free surface inlet and outlet\ud problems
We investigate and compare the boundary conditions that are to be applied to free surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well-known that the flux scales with Ca2/3, but this classical result is nonuniform as the contact angle approaches . By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed
Electron Entanglement via a Quantum Dot
This Letter presents a method of electron entanglement generation. The system
under consideration is a single-level quantum dot with one input and two output
leads. The leads are arranged such that the dot is empty, single electron
tunneling is suppressed by energy conservation, and two-electron virtual
co-tunneling is allowed. This yields a pure, non-local spin-singlet state at
the output leads. Coulomb interaction is the nonlinearity essential for
entanglement generation, and, in its absence, the singlet state vanishes. This
type of electron entanglement is a four-wave mixing process analogous to the
photon entanglement generated by a Chi-3 parametric amplifier.Comment: 4 page
Microwave Spectroscopy
Contains reports on two research projects.United States Army Signal Corps (Contract DA36-039-sc-74895
- …
