34 research outputs found

    Expression of NR2B in Cerebellar Granule Cells Specifically Facilitates Effect of Motor Training on Motor Learning

    Get PDF
    It is believed that gene/environment interaction (GEI) plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s) that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning

    Axonal BACE1 dynamics and targeting in hippocampal neurons: a role for Rab11 GTPase

    Get PDF
    BACKGROUND: BACE1 is one of the two enzymes that cleave amyloid precursor protein to generate Alzheimer's disease (AD) beta amyloid peptides. It is widely believed that BACE1 initiates APP processing in endosomes, and in the brain this cleavage is known to occur during axonal transport of APP. In addition, BACE1 accumulates in dystrophic neurites surrounding brain senile plaques in individuals with AD, suggesting that abnormal accumulation of BACE1 at presynaptic terminals contributes to pathogenesis in AD. However, only limited information is available on BACE1 axonal transport and targeting. RESULTS: By visualizing BACE1-YFP dynamics using live imaging, we demonstrate that BACE1 undergoes bi-directional transport in dynamic tubulo-vesicular carriers along axons in cultured hippocampal neurons and in acute hippocampal slices of transgenic mice. In addition, a subset of BACE1 is present in larger stationary structures, which are active presynaptic sites. In cultured neurons, BACE1-YFP is preferentially targeted to axons over time, consistent with predominant in vivo localization of BACE1 in presynaptic terminals. Confocal analysis and dual-color live imaging revealed a localization and dynamic transport of BACE1 along dendrites and axons in Rab11-positive recycling endosomes. Impairment of Rab11 function leads to a diminution of total and endocytosed BACE1 in axons, concomitant with an increase in the soma. Together, these results suggest that BACE1 is sorted to axons in endosomes in a Rab11-dependent manner. CONCLUSION: Our results reveal novel information on dynamic BACE1 transport in neurons, and demonstrate that Rab11-GTPase function is critical for axonal sorting of BACE1. Thus, we suggest that BACE1 transcytosis in endosomes contributes to presynaptic BACE1 localization

    Transgenic neuronal overexpression reveals that stringently regulated p23 expression is critical for coordinated movement in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>p23 belongs to the highly conserved p24 family of type I transmembrane proteins, which participate in the bidirectional protein transport between the endoplasmic reticulum and Golgi apparatus. Mammalian p23 has been shown to interact with γ-secretase complex, and modulate secretory trafficking as well as intramembranous processing of amyloid precursor protein in cultured cells. Negative modulation of β-amyloid production by p23 in cultured cell lines suggested that elevation of p23 expression in neurons might mitigate cerebral amyloid burden.</p> <p>Results</p> <p>We generated several lines of transgenic mice expressing human p23 in neurons under the control of <it>Thy-1.2 </it>promoter. We found that even a 50% increase in p23 levels in the central nervous system of mice causes post-natal growth retardation, severe neurological problems characterized by tremors, seizure, ataxia, and uncoordinated movements, and premature death. The severity of the phenotype closely correlated with the level of p23 overexpression in multiple transgenic lines. While the number and general morphology of neurons in Hup23 mice appeared to be normal throughout the brain, abnormal non-Golgi p23 localization was observed in a subset of neurons with high transgene expression in brainstem. Moreover, detailed immunofluorescence analysis revealed marked proliferation of astrocytes, activation of microglia, and thinning of myelinated bundles in brainstem of Hup23 mice.</p> <p>Conclusions</p> <p>These results demonstrate that proper level of p23 expression is critical for neuronal function, and perturbing p23 function by overexpression initiates a cascade of cellular reactions in brainstem that leads to severe motor deficits and other neurological problems, which culminate in premature death. The neurological phenotype observed in Hup23 mice highlights significant adverse effects associated with manipulating neuronal expression of p23, a previously described negative modulator of γ-secretase activity and β-amyloid production. Moreover, our report has broader relevance to molecular mechanisms in several neurodegenerative diseases as it highlights the inherent vulnerability of the early secretory pathway mechanisms that ensure proteostasis in neurons.</p

    Early Delivery of Misfolded PrP from ER to Lysosomes by Autophagy

    Get PDF
    Prion diseases are linked to the accumulation of a misfolded isoform (PrPSc) of prion protein (PrP). Evidence suggests that lysosomes are degradation endpoints and sites of the accumulation of PrPSc. We questioned whether lysosomes participate in the early quality control of newly generated misfolded PrP. We found PrP carrying the disease-associated T182A mutation (Mut-PrP) was delivered to lysosomes in a Golgi-independent manner. Time-lapse live cell imaging revealed early formation and uptake of GFP-tagged Mut-PrP aggregates into LysoTracker labeled vesicles. Compared with Wt-PrP, Mut-PrP expression was associated with an elevation in several markers of the autophagy-lysosomal pathway, and it extensively colocalized with the autophagosome-specific marker, LC3B. In autophagy deficient (ATG5−/−) mouse embryonic fibroblasts, or in normal cells treated with the autophagy-inhibitor 3-MA, Mut-PrP colocalization with lysosomes was reduced to a similar extent. Additionally, 3-MA selectively impaired the degradation of insoluble Mut-PrP, resulting in an increase in protease-resistant PrP, whereas the induction of autophagy by rapamycin reduced it. These findings suggest that autophagy might function as a quality control mechanism to limit the accumulation of misfolded PrP that normally leads to the generation of PrPSc

    TRPC6 channel translocation into phagosomal membrane augments phagosomal function

    Get PDF
    Defects in the innate immune system in the lung with attendant bacterial infections contribute to lung tissue damage, respiratory insufficiency, and ultimately death in the pathogenesis of cystic fibrosis (CF). Professional phagocytes, including alveolar macrophages (AMs), have specialized pathways that ensure efficient killing of pathogens in phagosomes. Phagosomal acidification facilitates the optimal functioning of degradative enzymes, ultimately contributing to bacterial killing. Generation of low organellar pH is primarily driven by the V-ATPases, proton pumps that use cytoplasmic ATP to load H(+) into the organelle. Critical to phagosomal acidification are various channels derived from the plasma membrane, including the anion channel cystic fibrosis transmembrane conductance regulator, which shunt the transmembrane potential generated by movement of protons. Here we show that the transient receptor potential canonical-6 (TRPC6) calcium-permeable channel in the AM also functions to shunt the transmembrane potential generated by proton pumping and is capable of restoring microbicidal function to compromised AMs in CF and enhancement of function in non-CF cells. TRPC6 channel activity is enhanced via translocation to the cell surface (and then ultimately to the phagosome during phagocytosis) in response to G-protein signaling activated by the small molecule (R)-roscovitine and its derivatives. These data show that enhancing vesicular insertion of the TRPC6 channel to the plasma membrane may represent a general mechanism for restoring phagosome activity in conditions, where it is lost or impaired.Fil: Riazanski, Vladimir. University of Chicago; Estados UnidosFil: Gabdoulkhakova, Aida G.. University of Chicago; Estados UnidosFil: Boynton, Lin S.. University of Chicago; Estados UnidosFil: Eguchi, Raphael R.. University of Chicago; Estados UnidosFil: Deriy, Ludmila V.. University of Chicago; Estados UnidosFil: Hogarth, D. Kyle. University of Chicago; Estados UnidosFil: Loaëc, Nadège. ManRos Therapeutics; FranciaFil: Oumata, Nassima. ManRos Therapeutics; FranciaFil: Galons, Hervé. Universite de Paris; FranciaFil: Brown, Mary E.. University of Chicago; Estados UnidosFil: Shevchenko, Pavel. University of Chicago; Estados UnidosFil: Gallan, Alexander J.. University of Chicago; Estados UnidosFil: Yoo, Sang Gune. University of Chicago; Estados UnidosFil: Naren, Anjaparavanda P.. Cincinnati Children’s Hospital Medical Center; Estados UnidosFil: Villereal, Mitchel L.. University of Chicago; Estados UnidosFil: Beacham, Daniel W.. Thermo Scientific; Estados UnidosFil: Bindokas, Vytautas P.. University of Chicago; Estados UnidosFil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Meijer, Laurent. ManRos Therapeutics; FranciaFil: Nelson, Deborah J.. University of Chicago; Estados Unido
    corecore