4 research outputs found

    The Influence of Hydrocarbon-Oxidizing Auxin-Producing Bacteria on the Growth, Biochemical Parameters, and Hormonal Status of Barley Plants in the Process of Bioremediation of Oil-Contaminated Soil

    Get PDF
    Взаимосвязи бактерий и растений в процессе биоремедиации почв, загрязненных нефтью, уделяется много внимания, однако воздействие бактерий-деструкторов нефти, синтезирующих фитогормоны, на содержание и распределение этих соединений в самих растениях, исследовано слабо. Целью полевого опыта было изучение влияния углеводородокисляющих бактерий, продуцирующих ауксины, на ростовые, биохимические показатели и гормональный статус растений ячменя в присутствии нефти и перспективы применения их ассоциаций для очистки почвы, содержащей нефть (в среднем 2,7 %). Обработка растений штаммами Enterobacter sp. UOM 3 и Pseudomonas hunanensis IB C7 приводила к увеличению длины и массы корней и побегов, индекса листовой поверхности и улучшению показателей элементов структуры урожая, которые были угнетены под воздействием поллютанта. В результате бактеризации повышалось содержание хлорофилла, флавоноидов и снижалось количество пролина. Наиболее заметным проявлением влияния бактерий на гормональную систему растений было уменьшение накопления абсцизовой кислоты. Полученные данные свидетельствуют о том, что интродукция микроорганизмов ослабляла для растений негативные последствия абиотического стресса, вызванного присутствием нефти. Совместное применение бактерий-нефтедеструкторов и растений эффективнее снижало содержание углеводородов в почве и увеличивало ее микробиологическую активность по сравнению с использованием их по отдельности. Изученные микробно-растительные комплексы признаны перспективными для биоремедиации нефтезагрязненных почвExtensive research has been done to investigate the relationship between bacteria and plants in the process of bioremediation of soils contaminated with oil, but the effect of oil-degrading bacteria that synthesize phytohormones on the content and distribution of these compounds in plants has been poorly studied. The aim of the field experiment was to study the effect of hydrocarbon-oxidizing bacteria producing auxins on the growth, biochemical parameters, and hormonal status of barley plants in the presence of oil and the prospects for using bacterial-plant associations for treating soil that contains oil (2.7 %, on average). Treatment of plants with cultures of Enterobacter sp. UOM 3 and Pseudomonas hunanensis IB C7 led to an increase in the length and mass of roots and shoots and the leaf surface index and an improvement in the parameters of the components of the crop structure that were suppressed by the pollutant. As a result of bacterization, the contents of chlorophyll and flavonoids increased, and the amount of proline decreased. The most noticeable effect of bacteria on the hormonal system of plants was a decrease in the accumulation of abscisic acid. The data obtained indicate that the treatment of plants with bacterial cultures alleviated the negative consequences of abiotic stress caused by the presence of oil for plants. The use of oil-degrading bacteria and plants in combination rather than separately more effectively reduced the content of hydrocarbons in the soil and increased its microbiological activity. The microbial-plant combinations studied in this work are regarded as promising for the bioremediation of oil-contaminated soil

    Effect of partial rootzone drying on the concentration of zeatin-type cytokinins in tomato (Lycopersicon esculentum Mill.) xylem sap and leaves.

    No full text
    Effect of partial rootzone drying on the concentration of zeatin-type cytokinins in tomato (Solanum lycopersicum L.) xylem sap and leaves Guzel R. Kudoyarova1, Lidia B. Vysotskaya1, Alla Cherkozyanova1 and Ian C. Dodd2,* 1Institute of Biology of the Russian Academy of Sciences, Ufa Research Centre, Oktyabrya str. 69, 450054, Ufa, Russian Federation 2Department of Biological Sciences, The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK * To whom correspondence should be addressed. E-mail: [email protected] Decreased cytokinin (CK) export from roots in drying soil might provide a root-to-shoot signal impacting on shoot physiology. Although several studies show that soil drying decreases the CK concentration of xylem sap collected from the roots, it is not known whether this alters xylem CK concentration ([CKxyl]) in the leaves and bulk leaf CK concentration. Tomato (Solanum lycopersicum L.) plants were grown with roots split between two soil columns. During experiments, water was applied to both columns (well-watered; WW) or one (partial rootzone drying; PRD) column. Irrigation of WW plants aimed to replace transpirational losses every day, while PRD plants received half this amount. Xylem sap was collected by pressurizing detached leaves using a Scholander pressure chamber, and zeatin-type CKs were immunoassayed using specific antibodies raised against zeatin riboside after separating their different forms (free zeatin, its riboside, and nucleotide) by thin-layer chromatography. PRD decreased the whole plant transpiration rate by 22% and leaf water potential by 0.08 MPa, and increased xylem abscisic acid (ABA) concentration 2.5-fold. Although PRD caused no detectable change in [CKxyl], it decreased the CK concentration of fully expanded leaves by 46%. That [CKxyl] was maintained and not increased while transpiration decreased suggests that loading of CK into the xylem was also decreased as the soil dried. That leaf CK concentration did not decline proportionally with CK delivery suggests that other mechanisms such as CK metabolism influence leaf CK status of PRD plants. The causes and consequences of decreased shoot CK status are discussed

    ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient deprived wheat.

    No full text
    Although nutrient deprivation alters the concentrations of several plant hormones, the role of each in decreasing shoot-to-root ratio is not clear. A 10-fold dilution of the nutrient concentration supplied to hydroponically-grown 7-day-old durum wheat (Triticum turgidum L. ssp. durum Desf.) plants decreased shoot growth, shoot-to-root ratio and shoot and root cytokinin concentrations, increased shoot ABA concentration and shoot cytokinin oxidase activity, but had no effect on xylem sap ABA and cytokinin concentrations. Nutrient deprivation also increased xylem concentrations of conjugated ABA. The role of ABA in these responses was addressed by adding 11.4 µm ABA to the nutrient solution of well fertilised plants, or 1.2 mm fluridone (an inhibitor of ABA biosynthesis) to the nutrient solution of nutrient-deprived plants. The former induced similar changes in shoot-to-root ratio (by inhibiting shoot growth), shoot ABA concentration, shoot and root cytokinin concentrations and shoot cytokinin oxidase activity as nutrient deprivation. Conversely, fluridone addition to nutrient-deprived plants restored shoot-to-root ratio (by inhibiting root growth), shoot ABA concentration, shoot and root cytokinin concentrations to levels similar to well fertilised plants. Although root growth maintenance during nutrient deprivation depends on a threshold ABA concentration, shoot growth inhibition is independent of shoot ABA status. Although fluridone decreased shoot cytokinin oxidase activity of nutrient-deprived plants, it was still 1.7-fold greater than well fertilised plants, implying that nutrient deprivation could also activate shoot cytokinin oxidase independently of ABA. These data question the root signal basis of cytokinin action, but demonstrate that changes in ABA status can regulate shoot cytokinin concentrations via altering their metabolism
    corecore