52 research outputs found
Magnetically operated nanorelay based on two single-walled carbon nanotubes filled with endofullerenes Fe@C20
Structural and energy characteristics of the smallest magnetic endofullerene
Fe@C20 have been calculated using the density functional theory approach. The
ground state of Fe@C20 is found to be a septet state, and the magnetic moment
of Fe@C20 is estimated to be 8 Bohr magnetons. Characteristics of an (8,8)
carbon nanotube with a single Fe@C20 inside are studied in the framework of the
semiempirical approach. The scheme of a magnetic nanorelay based on
cantilevered nanotubes filled with magnetic endofullerenes is elaborated. The
proposed nanorelay is turned on as a result of bending of nanotubes by a
magnetic force. Operational characteristics of such a nanorelay based on (8,8)
and (21,21) nanotubes fully filled with Fe@C20 are estimated and compared to
the ones of a nanorelay made of a (21,21) nanotube fully filled with
experimentally observed (Ho3N)@C80 with the magnetic moment of 21 Bohr
magnetons. Room temperature operation of (21,21) nanotube based nanorelays is
shown.Comment: 18 pages, 9 figure
Interlayer interaction, shear vibrational mode, and tribological properties of two-dimensional bilayers with a commensurate moir\'e pattern
The potential energy surface (PES) of interlayer interaction of infinite
twisted bilayer graphene is calculated for a set of commensurate moir\'e
patterns using the registry-dependent Kolmogorov-Crespi empirical potential.
The calculated PESs have the same shape for all considered moir\'e patterns
with the unit cell size of the PES which is inversely related to the unit cell
size of the moir\'e pattern. The amplitude of PES corrugations is found to
decrease exponentially upon increasing the size of the moir\'e pattern unit
cell. An analytical expression for such a PES including the first Fourier
harmonics compatible with the symmetries of both layers is derived. It is shown
that the calculated PESs can be approximated by the derived expression with the
accuracy within 1%. This means that different physical properties associated
with relative in-plane motion of graphene layers are interrelated and can be
expressed analytically as functions of the amplitude of PES corrugations. In
this way, we obtain the shear mode frequency, shear modulus, shear strength and
barrier for relative rotation of the commensurate twisted layers to a fully
incommensurate state for the considered moir\'e patterns. This barrier may
possibly lead to the macroscopic robust superlubricity for twisted graphene
bilayer with a commensurate moir\'e pattern. The conclusions made should be
valid for diverse 2D systems of twisted commensurate layers.Comment: 9 pages, 3 figures; Supplemental Material: 2 pages, 1 figur
ΠΡΡΠΎΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΡΠΉ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡ Ρ ΡΠ°Π±ΠΎΡΠΈΠΌ Π²Π΅ΡΠ΅ΡΡΠ²ΠΎΠΌ Β«ΠΈΠ·ΠΎΠ»ΡΡΠΎΡ Π½Π΅Π»Π΅Π³ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΊΡΠ΅ΠΌΠ½ΠΈΠΉ ΠΈΠ·ΠΎΠ»ΡΡΠΎΡΒ»
The study of the parameters of capacitors with various working substances is of interest for the design and creation of electronic elements, in particular for the development of high-frequency phase-shifting circuits.The purpose of the work is to calculate the high-frequency capacitance of a capacitor with the working substance "insulator-undoped silicon-insulator" at different applied to the capacitor direct current (DC) voltages, measuring signal frequencies and temperatures.A model of such the capacitor is proposed, in which 30 Β΅m thick layer of undoped (intrinsic) crystalline silicon (i-Si) is separated from each of the capacitor electrodes by 1 Β΅m thick insulator layer (silicon dioxide).The dependences of the capacitor capacitance on the DC electrical voltage U on metal electrodes at zero frequency and at the measuring signal frequency of 1 MHz at absolute temperatures T = 300 and 400 K are calculated. It is shown that the real part of the capacitor capacitance increases monotonically, while the imaginary part is negative and non-monotonically depends on U at the temperature T = 300 K. An increase in the real part of the capacitor capacitance up to the geometric capacitance of oxide layers with increasing temperature is due to a decrease in the electrical resistance of i-Si layer. As a result, with an increase in temperature up to 400 K, the real and imaginary parts of the capacitance take constant values independent of U. The capacitance of i-Si layer with an increase in both temperature T and voltage U is shunted by the electrical conductivity of this layer. The phase shift is determined for a sinusoidal electrical signal with a frequency of 0.3, 1, 10, 30, 100, and 300 MHz applied to the capacitor at temperatures 300 and 400 K.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠΎΠ² Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠ°Π±ΠΎΡΠΈΠΌΠΈ Π²Π΅ΡΠ΅ΡΡΠ²Π°ΠΌΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠΈ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π΄Π»Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Π²ΡΡΠΎΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΡΡ
ΡΠ°Π·ΠΎΡΠ΄Π²ΠΈΠ³Π°ΡΡΠΈΡ
ΡΠ΅ΠΏΠ΅ΠΉ.Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ Π²ΡΡΠΎΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΡΡ Π΅ΠΌΠΊΠΎΡΡΡ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠ° Ρ ΡΠ°Π±ΠΎΡΠΈΠΌ Π²Π΅ΡΠ΅ΡΡΠ²ΠΎΠΌ Β«ΠΈΠ·ΠΎΠ»ΡΡΠΎΡ Π½Π΅Π»Π΅Π³ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΊΡΠ΅ΠΌΠ½ΠΈΠΉ ΠΈΠ·ΠΎΠ»ΡΡΠΎΡΒ» ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΠΎΠ΄Π°Π²Π°Π΅ΠΌΡΡ
Π½Π° ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡΡ
, ΡΠ°ΡΡΠΎΡΠ°Ρ
ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ
.ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ»ΠΎΠΉ Π½Π΅Π»Π΅Π³ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ (ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ) ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ΅ΠΌΠ½ΠΈΡ (i-Si) ΡΠΎΠ»ΡΠΈΠ½ΠΎΠΉ 30 ΠΌΠΊΠΌ ΠΎΡΠ΄Π΅Π»Π΅Π½ ΠΎΡ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠ° ΡΠ»ΠΎΠ΅ΠΌ ΠΈΠ·ΠΎΠ»ΡΡΠΎΡΠ° (Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΡ) ΡΠΎΠ»ΡΠΈΠ½ΠΎΠΉ 1 ΠΌΠΊΠΌ.Π Π°ΡΡΡΠΈΡΠ°Π½Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ Π΅ΠΌΠΊΠΎΡΡΠΈ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠ° ΠΎΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ U Π½Π° ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π°Ρ
Π½Π° Π½ΡΠ»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ΅ ΠΈ Π½Π° ΡΠ°ΡΡΠΎΡΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° 1 ΠΠΡ ΠΏΡΠΈ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ
ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ
T = 300 ΠΈ 400 Π. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΡΠ°ΡΡΡ Π΅ΠΌΠΊΠΎΡΡΠΈ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠ° ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π° ΠΌΠ½ΠΈΠΌΠ°Ρ ΡΠ°ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π° ΠΈ Π½Π΅ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ U ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ T = 300 Π. Π£Π²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ Π΅ΠΌΠΊΠΎΡΡΠΈ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠ° Π΄ΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΅ΠΌΠΊΠΎΡΡΠΈ ΠΎΠΊΡΠΈΠ΄Π½ΡΡ
ΡΠ»ΠΎΠ΅Π² ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ»ΠΎΡ i-Si. ΠΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π΄ΠΎ 400 Π Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΈ ΠΌΠ½ΠΈΠΌΠ°Ρ ΡΠ°ΡΡΠΈ Π΅ΠΌΠΊΠΎΡΡΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π½Π΅Π·Π°Π²ΠΈΡΡΡΠΈΠ΅ ΠΎΡ U. ΠΠΌΠΊΠΎΡΡΡ ΡΠ»ΠΎΡ i-Si ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΠΊΠ°ΠΊ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ T, ΡΠ°ΠΊ ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ U ΡΡΠ½ΡΠΈΡΡΠ΅ΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΡ ΡΡΠΎΠ³ΠΎ ΡΠ»ΠΎΡ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΡΠ΄Π²ΠΈΠ³ ΡΠ°Π· Π΄Π»Ρ ΡΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° Ρ ΡΠ°ΡΡΠΎΡΠΎΠΉ 0,3; 1; 10; 30; 100 ΠΈ 300 ΠΠΡ, ΠΏΠΎΠ΄Π°Π²Π°Π΅ΠΌΠΎΠ³ΠΎ Π½Π° ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ
300 ΠΈ 400 Π
High-Frequency Capacitor with Working Substance "InsulatorβUndoped SiliconβInsulator"
The study of the parameters of capacitors with various working substances is of interest for the design
and creation of electronic elements, in particular for the development of high-frequency phase-shifting circuits.
The purpose of the work is to calculate the high-frequency capacitance of a capacitor with the working
substance insulator undoped silicon insulator at different applied to the capacitor direct current (DC)
voltages, measuring signal frequencies and temperatures.
A model of such the capacitor is proposed, in which 30 Β΅m thick layer of undoped (intrinsic) crystalline
silicon (i-Si) is separated from each of the capacitor electrodes by 1 Β΅m thick insulator layer (silicon
dioxide).
The dependences of the capacitor capacitance on the DC electrical voltage U on metal electrodes at
zero frequency and at the measuring signal frequency of 1 MHz at absolute temperatures T = 300 and
400 K are calculated. It is shown that the real part of the capacitor capacitance increases monotonically,
while the imaginary part is negative and non-monotonically depends on U at the temperature T = 300 K. An
increase in the real part of the capacitor capacitance up to the geometric capacitance of oxide layers with
increasing temperature is due to a decrease in the electrical resistance of i-Si layer. As a result, with an increase
in temperature up to 400 K, the real and imaginary parts of the capacitance take constant values independent
of U. The capacitance of i-Si layer with an increase in both temperature T and voltage U is
shunted by the electrical conductivity of this layer. The phase shift is determined for a sinusoidal electrical
signal with a frequency of 0.3, 1, 10, 30, 100, and 300 MHz applied to the capacitor at temperatures 300
and 400 K
Π‘Ρ Π΅ΠΌΠ° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΠΠ΅Π»ΡΡΡΠ΅ Π½Π° ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ Ρ ΠΏΡΡΠΆΠΊΠΎΠ²ΡΠΌ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² ΠΏΠΎ Π΄Π΅ΡΠ΅ΠΊΡΠ°ΠΌ
The study of thermoelectric properties of crystalline semiconductors with structural defects is of practical interest in the development of radiation-resistant Peltier elements. In this case, the spectrum of energy levels of hydrogen-like impurities and intrinsic point defects in the band gap (energy gap) of crystal plays an important role.The purpose of this work is to analyze the features of the single-electron band model of semiconductors with hopping electron migration both via atoms of hydrogen-like impurities and via their own point triplecharged intrinsic defects in the c- and v-bands, as well as to search for the possibility of their use in the Peltier element in the temperature range, when the transitions of electrons and holes from impurity atoms and/or intrinsic defects to the c- and v-bands can be neglected.For Peltier elements with electron hopping migration we propose: (i) an h-diode containing |d1)and |d2)-regions with hydrogen-like donors of two types in the charge states (0) and (+1) and compensating them hydrogen-like acceptors in the charge state (β1); (ii) a homogeneous semiconductor containing intrinsic t-defects in the charge states (β1, 0, +1), as well as ions of donors and acceptors to control the distribution of t-defects over the charge states. The band diagrams of the proposed Peltier elements in equilibrium and upon excitation of a stationary hopping electric current are analyzed.A model of the h-diode containing hydrogen-like donors of two types |d1) and |d2) with hopping migration of electrons between them for 50 % compensation by acceptors is considered. It is shown that in the case of the reverse (forward) electrical bias of the diode, the cooling (heating) of the region of the electric double layer between |d1)and |d2)-regions is possible.A Peltier element based on a semiconductor with point t-defects is considered. It is assumed that the temperature and the concentration of ions of hydrogen-like acceptors and donors are to assure all t-defects to be in the charge state (0). It is shown that in such an element it is possible to cool down the metal-semiconductor contact under a negative electric potential and to heat up the opposite contact under a positive potential.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠΌΠΎΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Ρ Π΄Π΅ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΡΡΡΡΠΊΡΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΏΡΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΠΈ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎ-ΡΡΠΎΠΉΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΠ΅Π»ΡΡΡΠ΅. ΠΡΠΈ ΡΡΠΎΠΌ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ ΠΈΠ³ΡΠ°Π΅Ρ ΡΠΏΠ΅ΠΊΡΡ ΡΡΠΎΠ²Π½Π΅ΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ
ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ ΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠΎΡΠ΅ΡΠ½ΡΡ
Π΄Π΅ΡΠ΅ΠΊΡΠΎΠ² Π² ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π»ΠΈ (Π·Π°ΠΏΡΠ΅ΡΡΠ½Π½ΠΎΠΉ Π·ΠΎΠ½Π΅) ΠΊΡΠΈΡΡΠ°Π»Π»Π°.Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ Π°Π½Π°Π»ΠΈΠ· ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΠΎΠ΄Π½ΠΎΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ Π·ΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Ρ ΠΏΡΡΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² ΠΊΠ°ΠΊ ΠΏΠΎ Π°ΡΠΎΠΌΠ°ΠΌ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ
ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ, ΡΠ°ΠΊ ΠΈ ΠΏΠΎ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΠΎΡΠ΅ΡΠ½ΡΠΌ ΡΡΡΡ
Π·Π°ΡΡΠ΄Π½ΡΠΌ Π΄Π΅ΡΠ΅ΠΊΡΠ°ΠΌ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠΈΡΠΊ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ΅ ΠΠ΅Π»ΡΡΡΠ΅ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ, ΠΊΠΎΠ³Π΄Π° ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π°ΠΌΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² ΠΈ Π΄ΡΡΠΎΠΊ Ρ Π°ΡΠΎΠΌΠΎΠ² ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ ΠΈ/ΠΈΠ»ΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ
Π΄Π΅ΡΠ΅ΠΊΡΠΎΠ² Π² cΠΈ v-Π·ΠΎΠ½Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π½Π΅Π±ΡΠ΅ΡΡ.Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΠ΅Π»ΡΡΡΠ΅ Ρ ΠΏΡΡΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ: 1) h-Π΄ΠΈΠΎΠ΄, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΉ |d1)ΠΈ |d2)-ΠΎΠ±Π»Π°ΡΡΠΈ Ρ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠΌΠΈ Π΄ΠΎΠ½ΠΎΡΠ°ΠΌΠΈ Π΄Π²ΡΡ
ΡΠΎΡΡΠΎΠ² Π² Π·Π°ΡΡΠ΄ΠΎΠ²ΡΡ
ΡΠΎΡΡΠΎΡΠ½ΠΈΡΡ
(0) ΠΈ (+1) ΠΈ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡΡΡΡΠΈΠ΅ ΠΈΡ
Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ Π°ΠΊΡΠ΅ΠΏΡΠΎΡΡ Π² Π·Π°ΡΡΠ΄ΠΎΠ²ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ (β1); 2) ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΡΠΉ ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΉ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ t-Π΄Π΅ΡΠ΅ΠΊΡΡ Π² Π·Π°ΡΡΠ΄ΠΎΠ²ΡΡ
ΡΠΎΡΡΠΎΡΠ½ΠΈΡΡ
(β1, 0, +1), Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΠΎΠ½Ρ Π΄ΠΎΠ½ΠΎΡΠΎΠ² ΠΈ Π°ΠΊΡΠ΅ΠΏΡΠΎΡΠΎΠ² Π΄Π»Ρ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ t-Π΄Π΅ΡΠ΅ΠΊΡΠΎΠ² ΠΏΠΎ Π·Π°ΡΡΠ΄ΠΎΠ²ΡΡ
ΡΠΎΡΡΠΎΡΠ½ΠΈΡΠΌ. ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ Π·ΠΎΠ½Π½ΡΠ΅ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΠ΅Π»ΡΡΡΠ΅ Π² ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΠΈ Β ΠΈ ΠΏΡΠΈ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½ΠΈΠΈ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΆΠΊΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΊΠ°.Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ h-Π΄ΠΈΠΎΠ΄Π°, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π³ΠΎ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ Π΄ΠΎΠ½ΠΎΡΡ Π΄Π²ΡΡ
ΡΠΎΡΡΠΎΠ² |d1) ΠΈ |d2) Ρ ΠΏΡΡΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠ΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² ΠΏΡΠΈ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΈΡ
Π½Π° 50 % Π°ΠΊΡΠ΅ΠΏΡΠΎΡΠ°ΠΌΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΌ (ΠΏΡΡΠΌΠΎΠΌ) ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠΈ Π΄ΠΈΠΎΠ΄Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ (Π½Π°Π³ΡΠ΅Π²Π°Π½ΠΈΠ΅) ΠΎΠ±Π»Π°ΡΡΠΈ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ»ΠΎΡ ΠΌΠ΅ΠΆΠ΄Ρ |d1)ΠΈ |d2)-ΠΎΠ±Π»Π°ΡΡΡΠΌΠΈ.Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½ ΡΠ»Π΅ΠΌΠ΅Π½Ρ ΠΠ΅Π»ΡΡΡΠ΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° Ρ ΡΠΎΡΠ΅ΡΠ½ΡΠΌΠΈ t-Π΄Π΅ΡΠ΅ΠΊΡΠ°ΠΌΠΈ. ΠΡΠΈΠ½ΠΈΠΌΠ°Π»ΠΎΡΡ, ΡΡΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ
Π°ΠΊΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΠΈ Π΄ΠΎΠ½ΠΎΡΠΎΠ² ΡΠ°ΠΊΠΎΠ²Ρ, ΡΡΠΎ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π²ΡΠ΅ t-Π΄Π΅ΡΠ΅ΠΊΡΡ Π½Π°Ρ
ΠΎΠ΄ΡΡΡΡ Π² Π·Π°ΡΡΠ΄ΠΎΠ²ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ (0). ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π² ΡΠ°ΠΊΠΎΠΌ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ° ΠΌΠ΅ΡΠ°Π»Π»-ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ, Π½Π°Ρ
ΠΎΠ΄ΡΡΠ΅Π³ΠΎΡΡ ΠΏΠΎΠ΄ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠΌ, ΠΈ Π½Π°Π³ΡΠ΅Π²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ°, ΠΏΠΎΠ΄ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠΌ
- β¦