52 research outputs found

    Magnetically operated nanorelay based on two single-walled carbon nanotubes filled with endofullerenes Fe@C20

    Get PDF
    Structural and energy characteristics of the smallest magnetic endofullerene Fe@C20 have been calculated using the density functional theory approach. The ground state of Fe@C20 is found to be a septet state, and the magnetic moment of Fe@C20 is estimated to be 8 Bohr magnetons. Characteristics of an (8,8) carbon nanotube with a single Fe@C20 inside are studied in the framework of the semiempirical approach. The scheme of a magnetic nanorelay based on cantilevered nanotubes filled with magnetic endofullerenes is elaborated. The proposed nanorelay is turned on as a result of bending of nanotubes by a magnetic force. Operational characteristics of such a nanorelay based on (8,8) and (21,21) nanotubes fully filled with Fe@C20 are estimated and compared to the ones of a nanorelay made of a (21,21) nanotube fully filled with experimentally observed (Ho3N)@C80 with the magnetic moment of 21 Bohr magnetons. Room temperature operation of (21,21) nanotube based nanorelays is shown.Comment: 18 pages, 9 figure

    Interlayer interaction, shear vibrational mode, and tribological properties of two-dimensional bilayers with a commensurate moir\'e pattern

    Full text link
    The potential energy surface (PES) of interlayer interaction of infinite twisted bilayer graphene is calculated for a set of commensurate moir\'e patterns using the registry-dependent Kolmogorov-Crespi empirical potential. The calculated PESs have the same shape for all considered moir\'e patterns with the unit cell size of the PES which is inversely related to the unit cell size of the moir\'e pattern. The amplitude of PES corrugations is found to decrease exponentially upon increasing the size of the moir\'e pattern unit cell. An analytical expression for such a PES including the first Fourier harmonics compatible with the symmetries of both layers is derived. It is shown that the calculated PESs can be approximated by the derived expression with the accuracy within 1%. This means that different physical properties associated with relative in-plane motion of graphene layers are interrelated and can be expressed analytically as functions of the amplitude of PES corrugations. In this way, we obtain the shear mode frequency, shear modulus, shear strength and barrier for relative rotation of the commensurate twisted layers to a fully incommensurate state for the considered moir\'e patterns. This barrier may possibly lead to the macroscopic robust superlubricity for twisted graphene bilayer with a commensurate moir\'e pattern. The conclusions made should be valid for diverse 2D systems of twisted commensurate layers.Comment: 9 pages, 3 figures; Supplemental Material: 2 pages, 1 figur

    Высокочастотный кондСнсатор с Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌ вСщСством «изолятор Π½Π΅Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ изолятор»

    Get PDF
    The study of the parameters of capacitors with various working substances is of interest for the design and creation of electronic elements, in particular for the development of high-frequency phase-shifting circuits.The purpose of the work is to calculate the high-frequency capacitance of a capacitor with the working substance "insulator-undoped silicon-insulator" at different applied to the capacitor direct current (DC) voltages, measuring signal frequencies and temperatures.A model of such the capacitor is proposed, in which 30 Β΅m thick layer of undoped (intrinsic) crystalline silicon (i-Si) is separated from each of the capacitor electrodes by 1 Β΅m thick insulator layer (silicon dioxide).The dependences of the capacitor capacitance on the DC electrical voltage U on metal electrodes at zero frequency and at the measuring signal frequency of 1 MHz at absolute temperatures T = 300 and 400 K are calculated. It is shown that the real part of the capacitor capacitance increases monotonically, while the imaginary part is negative and non-monotonically depends on U at the temperature T = 300 K. An increase in the real part of the capacitor capacitance up to the geometric capacitance of oxide layers with increasing temperature is due to a decrease in the electrical resistance of i-Si layer. As a result, with an increase in temperature up to 400 K, the real and imaginary parts of the capacitance take constant values independent of U. The capacitance of i-Si layer with an increase in both temperature T and voltage U is shunted by the electrical conductivity of this layer. The phase shift is determined for a sinusoidal electrical signal with a frequency of 0.3, 1, 10, 30, 100, and 300 MHz applied to the capacitor at temperatures 300 and 400 K.ИсслСдованиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² элСктричСских кондСнсаторов с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌΠΈ вСщСствами прСдставляСт интСрСс для проСктирования ΠΈ создания элСмСнтов элСктроники, Π² частности для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ высокочастотных Ρ„Π°Π·ΠΎΡΠ΄Π²ΠΈΠ³Π°ΡŽΡ‰ΠΈΡ… Ρ†Π΅ΠΏΠ΅ΠΉ.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π²Ρ‹ΡΠΎΠΊΠΎΡ‡Π°ΡΡ‚ΠΎΡ‚Π½ΡƒΡŽ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ кондСнсатора с Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌ вСщСством «изолятор Π½Π΅Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΉ изолятор» ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ΄Π°Π²Π°Π΅ΠΌΡ‹Ρ… Π½Π° кондСнсатор постоянных напряТСниях, частотах ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сигнала ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ….ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модСль Ρ‚Π°ΠΊΠΎΠ³ΠΎ кондСнсатора, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ слой Π½Π΅Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ (собствСнного) кристалличСского крСмния (i-Si) Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ 30 ΠΌΠΊΠΌ ΠΎΡ‚Π΄Π΅Π»Π΅Π½ ΠΎΡ‚ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· элСктродов кондСнсатора слоСм изолятора (диоксида крСмния) Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ 1 ΠΌΠΊΠΌ.Рассчитаны зависимости Смкости кондСнсатора ΠΎΡ‚ постоянного элСктричСского напряТСния U Π½Π° мСталличСских элСктродах Π½Π° Π½ΡƒΠ»Π΅Π²ΠΎΠΉ частотС ΠΈ Π½Π° частотС ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сигнала 1 ΠœΠ“Ρ† ΠΏΡ€ΠΈ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… T = 300 ΠΈ 400 К. Показано, Ρ‡Ρ‚ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ Смкости кондСнсатора ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ возрастаСт, Π° мнимая Ρ‡Π°ΡΡ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° ΠΈ Π½Π΅ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ зависит ΠΎΡ‚ U ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ T = 300 К. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ части Смкости кондСнсатора Π΄ΠΎ гСомСтричСской Смкости оксидных слоСв ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ обусловлСно ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ элСктричСского сопротивлСния слоя i-Si. ВслСдствиС этого с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π΄ΠΎ 400 К Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΈ мнимая части Смкости ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ постоянныС значСния, нСзависящиС ΠΎΡ‚ U. Π•ΠΌΠΊΠΎΡΡ‚ΡŒ слоя i-Si ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ ΠΊΠ°ΠΊ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ T, Ρ‚Π°ΠΊ ΠΈ напряТСния U ΡˆΡƒΠ½Ρ‚ΠΈΡ€ΡƒΠ΅Ρ‚ΡΡ элСктричСской ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ этого слоя. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ сдвиг Ρ„Π°Π· для ΡΠΈΠ½ΡƒΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ элСктричСского сигнала с частотой 0,3; 1; 10; 30; 100 ΠΈ 300 ΠœΠ“Ρ†, ΠΏΠΎΠ΄Π°Π²Π°Π΅ΠΌΠΎΠ³ΠΎ Π½Π° кондСнсатор ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… 300 ΠΈ 400 К

    High-Frequency Capacitor with Working Substance "Insulator–Undoped Silicon–Insulator"

    Get PDF
    The study of the parameters of capacitors with various working substances is of interest for the design and creation of electronic elements, in particular for the development of high-frequency phase-shifting circuits. The purpose of the work is to calculate the high-frequency capacitance of a capacitor with the working substance insulator undoped silicon insulator at different applied to the capacitor direct current (DC) voltages, measuring signal frequencies and temperatures. A model of such the capacitor is proposed, in which 30 Β΅m thick layer of undoped (intrinsic) crystalline silicon (i-Si) is separated from each of the capacitor electrodes by 1 Β΅m thick insulator layer (silicon dioxide). The dependences of the capacitor capacitance on the DC electrical voltage U on metal electrodes at zero frequency and at the measuring signal frequency of 1 MHz at absolute temperatures T = 300 and 400 K are calculated. It is shown that the real part of the capacitor capacitance increases monotonically, while the imaginary part is negative and non-monotonically depends on U at the temperature T = 300 K. An increase in the real part of the capacitor capacitance up to the geometric capacitance of oxide layers with increasing temperature is due to a decrease in the electrical resistance of i-Si layer. As a result, with an increase in temperature up to 400 K, the real and imaginary parts of the capacitance take constant values independent of U. The capacitance of i-Si layer with an increase in both temperature T and voltage U is shunted by the electrical conductivity of this layer. The phase shift is determined for a sinusoidal electrical signal with a frequency of 0.3, 1, 10, 30, 100, and 300 MHz applied to the capacitor at temperatures 300 and 400 K

    Π‘Ρ…Π΅ΠΌΠ° элСмСнта ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π½Π° ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ… с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²Ρ‹ΠΌ пСрСносом элСктронов ΠΏΠΎ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌ

    Get PDF
    The study of thermoelectric properties of crystalline semiconductors with structural defects is of practical interest in the development of radiation-resistant Peltier elements. In this case, the spectrum of energy levels of hydrogen-like impurities and intrinsic point defects in the band gap (energy gap) of crystal plays an important role.The purpose of this work is to analyze the features of the single-electron band model of semiconductors with hopping electron migration both via atoms of hydrogen-like impurities and via their own point triplecharged intrinsic defects in the c- and v-bands, as well as to search for the possibility of their use in the Peltier element in the temperature range, when the transitions of electrons and holes from impurity atoms and/or intrinsic defects to the c- and v-bands can be neglected.For Peltier elements with electron hopping migration we propose: (i) an h-diode containing |d1)and |d2)-regions with hydrogen-like donors of two types in the charge states (0) and (+1) and compensating them hydrogen-like acceptors in the charge state (βˆ’1); (ii) a homogeneous semiconductor containing intrinsic t-defects in the charge states (βˆ’1, 0, +1), as well as ions of donors and acceptors to control the distribution of t-defects over the charge states. The band diagrams of the proposed Peltier elements in equilibrium and upon excitation of a stationary hopping electric current are analyzed.A model of the h-diode containing hydrogen-like donors of two types |d1) and |d2) with hopping migration of electrons between them for 50 % compensation by acceptors is considered. It is shown that in the case of the reverse (forward) electrical bias of the diode, the cooling (heating) of the region of the electric double layer between |d1)and |d2)-regions is possible.A Peltier element based on a semiconductor with point t-defects is considered. It is assumed that the temperature and the concentration of ions of hydrogen-like acceptors and donors are to assure all t-defects to be in the charge state (0). It is shown that in such an element it is possible to cool down the metal-semiconductor contact under a negative electric potential and to heat up the opposite contact under a positive potential.ИсслСдованиС тСрмоэлСктричСских свойств кристалличСских ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² с Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ структуры прСдставляСт практичСский интСрСс ΠΏΡ€ΠΈ создании Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-стойких элСмСнтов ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅. ΠŸΡ€ΠΈ этом Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ ΠΈΠ³Ρ€Π°Π΅Ρ‚ спСктр ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ энСргии Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… примСсСй ΠΈ собствСнных Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² энСргСтичСской Ρ‰Π΅Π»ΠΈ (Π·Π°ΠΏΡ€Π΅Ρ‰Ρ‘Π½Π½ΠΎΠΉ Π·ΠΎΠ½Π΅) кристалла.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ· особСнностСй одноэлСктронной Π·ΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ элСктронов ΠΊΠ°ΠΊ ΠΏΠΎ Π°Ρ‚ΠΎΠΌΠ°ΠΌ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… примСсСй, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎ собствСнным Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌ трёхзарядным Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ поиск возмоТности ΠΈΡ… использования Π² элСмСнтС ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π² области Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€, ΠΊΠΎΠ³Π΄Π° ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°ΠΌΠΈ элСктронов ΠΈ Π΄Ρ‹Ρ€ΠΎΠΊ с Π°Ρ‚ΠΎΠΌΠΎΠ² примСсСй ΠΈ/ΠΈΠ»ΠΈ собствСнных Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² cΠΈ v-Π·ΠΎΠ½Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Ρ‡ΡŒ.Π’ качСствС элСмСнтов ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ элСктронов ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹: 1) h-Π΄ΠΈΠΎΠ΄, содСрТащий |d1)ΠΈ |d2)-области с Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠ½ΠΎΡ€Π°ΠΌΠΈ Π΄Π²ΡƒΡ… сортов Π² зарядовых состояниях(0) ΠΈ (+1) ΠΈ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΈΡ… Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ Π² зарядовом состоянии (βˆ’1); 2) ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ, содСрТащий собствСнныС t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ Π² зарядовых состояниях (βˆ’1, 0, +1), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠΎΠ½Ρ‹ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² для управлСния распрСдСлСниСм t-Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² ΠΏΠΎ зарядовых состояниям. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π·ΠΎΠ½Π½Ρ‹Π΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹Ρ… элСмСнтов ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π² равновСсии Β ΠΈ ΠΏΡ€ΠΈ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠΈ стационарного ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠ³ΠΎ элСктричСского Ρ‚ΠΎΠΊΠ°.РассмотрСна модСль h-Π΄ΠΈΠΎΠ΄Π°, содСрТащСго Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π΄ΠΎΠ½ΠΎΡ€Ρ‹ Π΄Π²ΡƒΡ… сортов |d1) ΠΈ |d2) с ΠΏΡ€Ρ‹ΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ элСктронов ΠΏΡ€ΠΈ компСнсации ΠΈΡ… Π½Π° 50 % Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ (прямом) элСктричСском смСщСнии Π΄ΠΈΠΎΠ΄Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ (Π½Π°Π³Ρ€Π΅Π²Π°Π½ΠΈΠ΅) области Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ элСктричСского слоя ΠΌΠ΅ΠΆΠ΄Ρƒ |d1)ΠΈ |d2)-областями.РассмотрСн элСмСнт ΠŸΠ΅Π»ΡŒΡ‚ΡŒΠ΅ Π½Π° основС ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° с Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌΠΈ t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ. ΠŸΡ€ΠΈΠ½ΠΈΠΌΠ°Π»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² Ρ‚Π°ΠΊΠΎΠ²Ρ‹, Ρ‡Ρ‚ΠΎ практичСски всС t-Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ находятся Π² зарядовом состоянии (0). Показано, Ρ‡Ρ‚ΠΎ Π² Ρ‚Π°ΠΊΠΎΠΌ элСмСнтС Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° ΠΌΠ΅Ρ‚Π°Π»Π»-ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ, находящСгося ΠΏΠΎΠ΄ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ элСктричСским ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ, ΠΈ Π½Π°Π³Ρ€Π΅Π²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°, ΠΏΠΎΠ΄ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ
    • …
    corecore