37 research outputs found

    A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families

    Get PDF
    Candida albicans is a pathogenic yeast that causes mucosal and systematic infections with high mortality. The absence of facile molecular genetics has been a major impediment to analysis of pathogenesis. The lack of meiosis coupled with the absence of plasmids makes genetic engineering cumbersome, especially for essential functions and gene families. We describe a C. albicans CRISPR system that overcomes many of the obstacles to genetic engineering in this organism. The high frequency with which CRISPR-induced mutations can be directed to target genes enables easy isolation of homozygous gene knockouts, even without selection. Moreover, the system permits the creation of strains with mutations in multiple genes, gene families, and genes that encode essential functions. This CRISPR system is also effective in a fresh clinical isolate of undetermined ploidy. Our method transforms the ability to manipulate the genome of Candida and provides a new window into the biology of this pathogen.National Institutes of Health (U.S.) (GM035010

    New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi

    Get PDF
    We have created new vectors for clustered regularly interspaced short palindromic repeat (CRISPR) mutagenesis in Candida albicans, Saccharomyces cerevisiae, Candida glabrata, and Naumovozyma castellii These new vectors permit a comparison of the requirements for CRISPR mutagenesis in each of these species and reveal different dependencies for repair of the Cas9 double-stranded break. Both C. albicans and S. cerevisiae rely heavily on homology-directed repair, whereas C. glabrata and N. castellii use both homology-directed and nonhomologous end-joining pathways. The high efficiency of these vectors permits the creation of unmarked deletions in each of these species and the recycling of the dominant selection marker for serial mutagenesis in prototrophs. A further refinement, represented by the "Unified" Solo vectors, incorporates Cas9, guide RNA, and repair template into a single vector, thus enabling the creation of vector libraries for pooled screens. To facilitate the design of such libraries, we have identified guide sequences for each of these species with updated guide selection algorithms.IMPORTANCE CRISPR-mediated genome engineering technologies have revolutionized genetic studies in a wide range of organisms. Here we describe new vectors and guide sequences for CRISPR mutagenesis in the important human fungal pathogens C. albicans and C. glabrata, as well as in the related yeasts S. cerevisiae and N. castellii The design of these vectors enables efficient serial mutagenesis in each of these species by leaving few, if any, exogenous sequences in the genome. In addition, we describe strategies for the creation of unmarked deletions in each of these species and vector designs that permit the creation of vector libraries for pooled screens. These tools and strategies promise to advance genetic engineering of these medically and industrially important species.National Institutes of Health (U.S.) (Grant GM035010)National Institutes of Health (U.S.) (Grant GM118135)National Institutes of Health (U.S.) (Grant R15AI130950

    New CRISPR mutagenesis strategies reveal variation in repair mechanisms among fungi

    No full text
    Guide RNA (sgRNA) sequences for CRISPR/Cas9 mutagenesis of Candida albicans, Candida glabrata, Saccharomyces cerevisiae, and Naumovozyma castellii. Scored guide sequences are designed to target either single genes, multiple genes, or single alleles (Candida albicans only). In the case of Candida glabrata, guides were designed against ORF sequences, or ORFs+UTRs as annotated at candidagenome.org

    Snf1 Protein Kinase and the Repressors Nrg1 and Nrg2 Regulate FLO11, Haploid Invasive Growth, and Diploid Pseudohyphal Differentiation

    No full text
    The Snf1 protein kinase of Saccharomyces cerevisiae is important for many cellular responses to glucose limitation, including haploid invasive growth. We show here that Snf1 regulates transcription of FLO11, which encodes a cell surface glycoprotein required for invasive growth. We further show that Nrg1 and Nrg2, two repressor proteins that interact with Snf1, function as negative regulators of invasive growth and as repressors of FLO11. We also examined the role of Snf1, Nrg1, and Nrg2 in two other Flo11-dependent processes. Mutations affected the initiation of biofilm formation, which is glucose sensitive, but also affected diploid pseudohyphal differentiation, thereby unexpectedly implicating Snf1 in a response to nitrogen limitation. Deletion of the NRG1 and NRG2 genes suppressed the defects of a snf1 mutant in all of these processes. These findings suggest a model in which the Snf1 kinase positively regulates Flo11-dependent developmental events by antagonizing Nrg-mediated repression of the FLO11 gene

    Nrg1 and Nrg2 Transcriptional Repressors Are Differently Regulated in Response to Carbon Source

    No full text
    The Nrg1 and Nrg2 repressors of Saccharomyces cerevisiae have highly similar zinc fingers and closely related functions in the regulation of glucose-repressed genes. We show that NRG1 and NRG2 are differently regulated in response to carbon source at both the RNA and protein levels. Expression of NRG1 RNA is glucose repressed, whereas NRG2 RNA levels are nearly constant. Nrg1 protein levels are elevated in response to glucose limitation or growth in nonfermentable carbon sources, whereas Nrg2 levels are diminished. Chromatin immunoprecipitation assays showed that Nrg1 and Nrg2 bind DNA both in the presence and absence of glucose. In mutant cells lacking the corepressor Ssn6(Cyc8)-Tup1, promoter-bound Nrg1, but not Nrg2, functions as an activator in a reporter assay, providing evidence that the two Nrg proteins have distinct properties. We suggest that the differences in expression and function of these two repressors, in combination with their similar DNA-binding domains, contribute to the complex regulation of the large set of glucose-repressed genes

    Repressors Nrg1 and Nrg2 Regulate a Set of Stress-Responsive Genes in Saccharomyces cerevisiae

    No full text
    The yeast Saccharomyces cerevisiae responds to environmental stress by rapidly altering the expression of large sets of genes. We report evidence that the transcriptional repressors Nrg1 and Nrg2 (Nrg1/Nrg2), which were previously implicated in glucose repression, regulate a set of stress-responsive genes. Genome-wide expression analysis identified 150 genes that were upregulated in nrg1Δ nrg2Δ double mutant cells, relative to wild-type cells, during growth in glucose. We found that many of these genes are regulated by glucose repression. Stress response elements (STREs) and STRE-like elements are overrepresented in the promoters of these genes, and a search of available expression data sets showed that many are regulated in response to a variety of environmental stress signals. In accord with these findings, mutation of NRG1 and NRG2 enhanced the resistance of cells to salt and oxidative stress and decreased tolerance to freezing. We present evidence that Nrg1/Nrg2 not only contribute to repression of target genes in the absence of stress but also limit induction in response to salt stress. We suggest that Nrg1/Nrg2 fine-tune the regulation of a set of stress-responsive genes

    Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages

    No full text
    Dectin-1, the major β-glucan receptor in leukocytes, triggers an effective immune response upon fungal recognition. Here we use sortase-mediated transpeptidation, a technique that allows placement of a variety of probes on a polypeptide backbone, to monitor the behavior of labeled functional dectin-1 in live cells with and without fungal challenge. Installation of probes on dectin-1 by sortagging permitted highly specific visualization of functional protein on the cell surface and its subsequent internalization upon ligand presentation. Retrieval of sortagged dectin-1 expressed in macrophages uncovered a unique interaction between dectin-1 and galectin-3 that functions in the proinflammatory response of macrophages to pathogenic fungi. When macrophages expressing dectin-1 are exposed to Candida albicans mutants with increased exposure of β-glucan, the loss of galectin-3 dramatically accentuates the failure to trigger an appropriate TNF-α response.National Institutes of Health (U.S.) (Grant GM040266)National Institute of Allergy and Infectious Diseases (U.S.) (Grant 5 R01 AI087879)Spain. Ministerio de Educación y Ciencia (Visiting Scholar Program (FU2006-0983))Fulbright ProgramNational Institutes of Health (U.S.) (National Research Service Award (F32 AI729353))Whitehead Institute for Biomedical Research (Margaret and Herman Sokol Fellowship in Biomedical Research

    Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation

    No full text
    The generation of mature functional RNAs from nascent transcripts requires the precise and coordinated action of numerous RNAs and proteins. One such protein family, the ribonuclease III (RNase III) endonucleases, includes Rnt1, which functions in fungal ribosome and spliceosome biogenesis, and Dicer, which generates the siRNAs of the RNAi pathway. The recent discovery of small RNAs in Candida albicans led us to investigate the function of C. albicans Dicer (CaDcr1). CaDcr1 is capable of generating siRNAs in vitro and is required for siRNA generation in vivo. In addition, CaDCR1 complements a Dicer knockout in Saccharomyces castellii, restoring RNAi-mediated gene repression. Unexpectedly, deletion of the C. albicans CaDCR1 results in a severe slow-growth phenotype, whereas deletion of another core component of the RNAi pathway (CaAGO1) has little effect on growth, suggesting that CaDCR1 may have an essential function in addition to producing siRNAs. Indeed CaDcr1, the sole functional RNase III enzyme in C. albicans, has additional functions: it is required for cleavage of the 3′ external transcribed spacer from unprocessed pre-rRNA and for processing the 3′ tail of snRNA U4. Our results suggest two models whereby the RNase III enzymes of a fungal ancestor, containing both a canonical Dicer and Rnt1, evolved through a series of gene-duplication and gene-loss events to generate the variety of RNase III enzymes found in modern-day budding yeasts
    corecore