22 research outputs found
Temporal And Spatial Turbulent Spectra Of MHD Plasma And An Observation Of Variance Anisotropy
The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment
Turbulence Analysis Of An Experimental Flux-Rope Plasma
We have previously generated elongated Taylor double-helix flux-rope plasmas in the SSX MHD wind tunnel. These plasmas are remarkable in their rapid relaxation (about one Alfven time) and their description by simple analytical Taylor force-free theory despite their high plasma beta and high internal flow speeds. We report on the turbulent features observed in these plasmas including frequency spectra, autocorrelation function, and probability distribution functions of increments. We discuss here the possibility that the turbulence facilitating access to the final state supports coherent structures and intermittency revealed by non-Gaussian signatures in the statistics. Comparisons to a Hall-MHD simulation of the SSX MHD wind tunnel show similarity in several statistical measures
Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma
We present results from the first self-consistent multi-fluid simulations of
chromospheric magnetic reconnection in a weakly ionized reacting plasma. We
simulate two dimensional magnetic reconnection in a Harris current sheet with a
numerical model which includes ion-neutral scattering collisions, ionization,
recombination, optically thin radiative loss, collisional heating, and thermal
conduction. In the resulting tearing mode reconnection the neutral and ion
fluids become decoupled upstream from the reconnection site, creating an excess
of ions in the reconnection region and therefore an ionization imbalance. Ion
recombination in the reconnection region, combined with Alfv\'{e}nic outflows,
quickly removes ions from the reconnection site, leading to a fast reconnection
rate independent of Lundquist number. In addition to allowing fast
reconnection, we find that these non-equilibria partial ionization effects lead
to the onset of the nonlinear secondary tearing instability at lower values of
the Lundquist number than has been found in fully ionized plasmas.These
simulations provide evidence that magnetic reconnection in the chromosphere
could be responsible for jet-like transient phenomena such as spicules and
chromospheric jets.Comment: 8 Figures, 32 pages tota