7 research outputs found

    The benefit of the glassy state of reinforcing particles for the densification of aluminum matrix composites

    Get PDF
    In metallic glass-reinforced metal matrix composites, the glassy phase can serve a dual purpose: (i) it can behave as soft binder and porosity remover during consolidation; and (ii) it can act as the hard reinforcing phase after densification. The present work aimed to demonstrate the benefit of the glassy reinforcing particles for the densification of aluminum matrix composites. The consolidation behavior of Al–50 vol.% Fe-based alloy mixtures prepared using a glassy Fe66Cr10Nb5B19 alloy powder (Tg = 521 °C, Tx = 573 °C) or a crystalline Fe62Cr10Nb12B16 alloy powder was studied under spark plasma sintering (SPS) and hot pressing (HP) conditions. The powders were consolidated by heating above the glass transition temperature of the glassy alloy (up to 540 °C in SPS and 570 °C in HP). When the coarse aluminum powder was used, the reinforcing particles formed chains within the microstructure. In composites formed from the fine Al powder, the particles of the Fe-based alloy were separated from each other by the metallic matrix, and the tendency to form agglomerates was reduced. The glassy state of the alloy was shown to be beneficial for densification, as the metallic glass acted as a soft binder. The densification enhancement effect was more pronounced in the case of reinforcing particles forming chains. The hardness of the Al–50 vol.% glassy Fe66Cr10Nb5B19 composites obtained by SPS was twice the hardness of the unreinforced sintered aluminum (110 HV1 versus 45 HV1)

    Metallic iron or a Fe-based glassy alloy to reinforce aluminum: reactions at the interface during spark plasma sintering and mechanical properties of the composites

    Get PDF
    The microstructural features and mechanical properties of composites formed by spark plasma sintering (SPS) of Al + 20 vol.% Fe and Al + 20 vol.% Fe66Cr10Nb5B19 (glassy alloy) mixtures composed of micrometer-sized particles are presented. The interaction between the mixture components was studied by differential thermal analysis and through examining the microstructure of composites sintered at two different SPS pressures. When the pressure was increased from 40 MPa to 80 MPa, the thickness of the reaction products formed between the iron particles and aluminum increased due to a more intimate contact between the phases established at a higher pressure. When the metallic glass was substituted for iron, the pressure increase had an opposite effect. It was concluded that local overheating at the interface in the case of Al + 20 vol.% Fe66Cr10Nb5B19 composites governed the formation of the product layers at 40 MPa. The influence of the nature of reinforcement on the mechanical properties of the composites was analyzed, for which sintered materials with similar microstructural features were compared. In composites without the reaction products and composites with thin layers of the products, the hardness increased by 13–38% relative to the unreinforced sintered aluminum, the glassy alloy and iron inclusions producing similar outcomes. The effect of the nature of added particles on the hardness and compressive strength of composites was seen when the microstructure of the material was such that an efficient load transfer mechanism was operative. This was possible upon the formation of thick layers of reaction products. Upon compression, the strong glassy cores experienced fracture, the composite with the glassy component showing a higher strength than the composite containing core-shell structures with metallic iron cores

    Microstructure and mechanical properties of composites obtained by spark plasma sintering of Al–Fe66Cr10Nb5B19 metallic glass powder mixtures

    Get PDF
    At present, metallic glasses are evaluated as alternative reinforcements for aluminum matrix composites. These composites are produced by powder metallurgy via consolidation of metallic glass-aluminum powder mixtures. In most studies, the goal has been to preserve the glassy state of the reinforcement during consolidation. However, it is also of interest to track the structure evolution of these composites when partial interaction between the matrix and the metallic glass is allowed during sintering of the mixtures. The present work was aimed to study the microstructure and mechanical properties of composites obtained by spark plasma sintering (SPS) of Al-20 vol.% Fe66Cr10Nb5B19 metallic glass mixtures and compare the materials, in which no significant interaction between the matrix and the Fe-based alloy occurred, with those featuring reaction product layers of different thicknesses. Composite materials were consolidated by SPS at 540 and 570 °C. The microstructure and mechanical properties of composites obtained by SPS and SPS followed by forging, composites with layers of interfacial reaction products of different thicknesses, and metallic glass-free sintered aluminum were comparatively analyzed to conclude on the influence of the microstructural features of the composites on their strength

    Metallic Glass-Reinforced Metal Matrix Composites: Design, Interfaces and Properties

    Get PDF
    When metals are modified by second-phase particles or fibers, metal matrix composites (MMCs) are formed. In general, for a given metallic matrix, reinforcements differing in their chemical nature and particle size/morphology can be suitable while providing different levels of strengthening. This article focuses on MMCs reinforced with metallic glasses and amorphous alloys, which are considered as alternatives to ceramic reinforcements. Early works on metallic glass (amorphous alloy)-reinforced MMCs were conducted in 1982–2005. In the following years, a large number of composites have been obtained and tested. Metallic glass (amorphous alloy)-reinforced MMCs have been obtained with matrices of Al and its alloys, Mg and its alloys, Ti alloys, W, Cu and its alloys, Ni, and Fe. Research has been extended to new compositions, new design approaches and fabrication methods, the chemical interaction of the metallic glass with the metal matrix, the influence of the reaction products on the properties of the composites, strengthening mechanisms, and the functional properties of the composites. These aspects are covered in the present review. Problems to be tackled in future research on metallic glass (amorphous alloy)-reinforced MMCs are also identified

    Towards a Better Understanding of the Interaction of Fe66Cr10Nb5B19 Metallic Glass with Aluminum: Growth of Intermetallics and Formation of Kirkendall Porosity during Sintering

    Get PDF
    Metallic-glass-reinforced metal matrix composites are a novel class of composite materials, in which particles of alloys with an amorphous structure play the role of reinforcement. During the fabrication of these composites, a crystalline metal is in contact with a multicomponent alloy of an amorphous structure. In the present work, the morphological features of the reaction products formed upon the interaction of Fe66Cr10Nb5B19 metallic glass particles with aluminum were studied. The composites were processed via spark plasma sintering (SPS), hot pressing or a combination of SPS and furnace annealing. The reaction products in composites with different concentrations of the metallic glass and different transformation degrees were examined. The products of the interaction of the Fe66Cr10Nb5B19 metallic glass with Al were observed as dense layers covering the residual alloy cores, needles of FeAl3 protruding from the dense shells as well as needles and platelets of FeAl3 distributed in the residual Al matrix. The possible role of the liquid phase in the structure formation of the reaction products is discussed. The formation of needle- and platelet-shaped particles presumably occurred via crystallization from the Al-Fe-based melt, which formed locally due to the occurrence of the exothermic reactions between aluminum and iron. At the same time, aluminum atoms diffused into the solid Fe-based alloy particles, forming an intermetallic layer, which could grow until the alloy was fully transformed. When aluminum melted throughout the volume of the composite during heating of the sample above 660 °C, a similar microstructure developed. In both Al–Fe66Cr10Nb5B19 and Al–Fe systems, upon the reactive transformation, pores persistently formed in locations occupied by aluminum owing to the occurrence of the Kirkendall effect

    Reactivity of a glassy and a crystalline Fe66Cr10Nb5B19 alloy towards aluminum during sintering: a comparative study

    No full text
    A glassy Fe66Cr10Nb5B19 alloy and its crystalline counterpart consisting of the α-(Fe,Cr), FeNbB and Fe2B phases were spark plasma sintered with aluminum at 570 °C to investigate the interfacial reactions in the systems. In the mixture containing the crystalline alloy, α-(Fe,Cr) and Fe2B reacted with aluminum forming the Fe-Al intermetallic reaction products. The crystallites of FeNbB were distributed in the intermetallic matrix. The absence of α-(Fe,Cr) and Fe2B in the composite sintered from the glassy alloy was confirmed by Mössbauer spectroscopy. Overall, under the short SPS processing, the crystalline alloy was found to be more reactive towards aluminum than the glassy alloy. An increased reactivity was due to the presence of α-(Fe,Cr), a Fe-rich phase, in the crystalline alloy

    Fabrication of High-Entropy Alloys Using a Combination of Detonation Spraying and Spark Plasma Sintering: A Case Study Using the Al-Fe-Co-Ni-Cu System

    No full text
    The use of pre-alloyed powders as high-entropy alloy (HEA) coating precursors ensures a predetermined (unaltered) elemental composition of the coating with regard to the feedstock powder. At the same time, it is interesting to tackle a more challenging task: to form alloy coatings from powder blends (not previously alloyed). The powder-blend-based route of coating formation eliminates the need to use atomization or ball milling equipment for powder preparation and allows for the introduction of additives into the material in a flexible manner. In this work, for the first time, a HEA was obtained using detonation spraying (DS) followed by spark plasma sintering (SPS). A powder mixture with a nominal composition of 10Al-22.5Fe-22.5Co-22.5Ni-22.5Cu (at.%) was detonation-sprayed to form a multicomponent metallic coating on a steel substrate. The elemental composition of the deposited layer was (9 ± 1)Al-(10 ± 1)Fe-(20 ± 1)Co-(34 ± 1)Ni-(27 ± 1)Cu (at.%), which is different from that of the feedstock powder because of the differences in the deposition efficiencies of the metals during DS. Despite the compositional deviations, the deposited layer was still suitable as a precursor for a HEA with a configurational entropy of ~1.5R, where R is the universal gas constant. The subsequent SPS treatment of the substrate/coating assembly was carried out at 800–1000 °C at a uniaxial pressure of 40 MPa. The SPS treatment of the deposited layer at 1000 °C for 20 min was sufficient to produce an alloy with a single-phase face-centered cubic structure and a porosity of 0.3). The hardness of the coatings measured in two perpendicular directions did not differ significantly. The features of the DS–SPS route of the formation of HEA coatings and its potential applications are discussed
    corecore