14 research outputs found

    Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage.

    Get PDF
    Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale

    A Preparative Method for the Isolation of Calponin from Molluscan Catch Muscle

    No full text
    We describe the development of a preparative method to isolate molluscan catch muscle, calponin. This method is based on the ability of calponin to interact with actin in a temperature-dependent manner. After extracting thin filaments, as previously described, the extract was ultracentrifuged at 2 °C. While other surface proteins of thin filaments co-precipitated with actin, calponin, along with some minor contaminants, remained in the supernatant. Calponin was purified through cation-exchange chromatography. The yield of pure protein was four-fold higher than that achieved through high-temperature extraction. To evaluate functionally isolated proteins, we determined the effect of calponin on Mg2+-ATPase activity of hybrid and non-hybrid actomyosin. The degree of ATPase inhibition was consistent with previously published data but strongly dependent on the environmental conditions and source of actin and myosin used. Furthermore, at low concentrations, calponin could induce the ATPase activity of hybrid actomyosin. This result was consistent with data indicating that calponin can modulate actin conformation to increase the relative content of “switched on” actin monomers in thin filaments. We assume that calponin obtained by the isolation method proposed herein is a fully functional protein that can both inhibit and induce the ATPase activity

    Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia)

    No full text
    Abstract Background Bivalves comprise a large, highly diverse taxon of invertebrate species. Developmental studies of neurogenesis among species of Bivalvia are limited. Due to a lack of neurogenesis information, it is difficult to infer a ground pattern for Bivalvia. To provide more comprehensive morphogenetic data on bivalve molluscs and relationships among molluscan clades, we investigated neurogenesis in the Pacific oyster, Crassostrea gigas, from the appearance of the first sensory cells to the formation of the larval ganglionic nervous system by co-immunocytochemistry of the neuronal markers FMRFamide or 5-HT and vesicular acetylcholine transporter (VAChT). Results Neurogenesis begins with the emergence of the apical serotonin-immunoreactive (5-HT-ir) sensory cells and paired sensory posttrochal dorsal and ventral FMRFamide-immunoreactive (FMRFamide-ir) cells at the early trochophore stage. Later, at the early veliger stage, the apical organ (AO) includes 5-HT-ir, FMRFamide-ir, and VAChT-ir cells. At the same stage, VAChT-ir cells appear in the posterior region of larvae and send axons towards the AO. Thus, FMRFamide-ir neurites and VAChT-ir processes form scaffolds for longitudinal neurite bundles develop into the paired ventral nerve cords (VNC). Later-appearing axons from the AO/CG neurons join the neurite bundles comprising the VNC. All larval ganglia appear along the VNC as paired or fused (epiathroid) clusters in late veliger and pediveliger larvae. We observed the transformation of the AO into the cerebral ganglia, which abundantly innervated the velum, and the transformation of ventral neurons into the pedal ganglia, innervating the foot, gills, and anterior adductor muscle. The visceral ganglia appear last in the pediveliger oyster and innervate the visceral mass and posterior adductor of premetamorphic larvae. In addition, a local FMRFamide-ir network was detected in the digestive system of pediveliger larvae. We identified VAChT-ir nervous elements in oyster larvae, which have not been observed previously in molluscs. Finally, we performed a morphology-based comparative analysis of neuronal structures among bivalve, conchiferan, and aculiferan species. Conclusions We described the development of the nervous system during the larval development in Crassostrea gigas. These data greatly advance the currently limited understanding of neurodevelopment in bivalves and mollusks, which has hampered the generation of a ground pattern reconstruction of the last common ancestor of Mollusca. Our morphological data support phylogenomic data indicating a closer Bivalvia-Gastropoda sister group relationship than the Bivalvia-Scaphopoda (Diasoma) group relationship

    Reversible and Irreversible Laser Interference Patterning of MOF Thin Films

    No full text
    Laser interference patterning on top of a thin film and inside a crystal is a powerful tool today to create the desired patterns for optical data processing. Here, we demonstrate reversible and irreversible laser interference patterning on a metal-organic framework (MOF) thin film through the water desorption and thermal decomposition processes, respectively. The irreversible interference pattern with a period of the strips of up to 5 µm has been realized, and its morphology has been characterized using confocal Raman and reflection spectroscopy as well as atomic force microscopy. We revealed that reducing the distance between the interference maxima from 10.5 to a record of 5 µm for MOFs yields a 10-fold increase in the surface roughness of the irreversible pattern; on the other hand, the reversible laser pattern provides a completely non-destructive effect of variable optical contrast. The experimental results obtained open up prospects for the use of MOF crystals as photosensitive materials in the template drawing of the desired patterns for different application scopes

    Reversible and Irreversible Laser Interference Patterning of MOF Thin Films

    No full text
    Laser interference patterning on top of a thin film and inside a crystal is a powerful tool today to create the desired patterns for optical data processing. Here, we demonstrate reversible and irreversible laser interference patterning on a metal-organic framework (MOF) thin film through the water desorption and thermal decomposition processes, respectively. The irreversible interference pattern with a period of the strips of up to 5 ”m has been realized, and its morphology has been characterized using confocal Raman and reflection spectroscopy as well as atomic force microscopy. We revealed that reducing the distance between the interference maxima from 10.5 to a record of 5 ”m for MOFs yields a 10-fold increase in the surface roughness of the irreversible pattern; on the other hand, the reversible laser pattern provides a completely non-destructive effect of variable optical contrast. The experimental results obtained open up prospects for the use of MOF crystals as photosensitive materials in the template drawing of the desired patterns for different application scopes

    Polymer Matrix Incorporated with ZIF-8 for Application in Nonlinear Optics

    No full text
    Polymers with embedded metal–organic frameworks (MOFs) have been of interest in research for advanced applications in gas separation, catalysis and sensing due to their high porosity and chemical selectivity. In this study, we utilize specific MOFs with high thermal stability and non-centrosymmetric crystal structures (zeolitic imidazolate framework, ZIF-8) in order to give an example of MOF–polymer composite applications in nonlinear optics. The synthesized MOF-based polymethyl methacrylate (PMMA) composite (ZIF-8–PMMA) demonstrates the possibility of the visualization of near-infrared laser beams in the research lab. The resulting ZIF-8–PMMA composite is exposed to a laser under extreme conditions and exhibits enhanced operating limits, much higher than that of the widely used inorganic materials in optics. Overall, our findings support the utilization of MOFs for synthesis of functional composites for optical application
    corecore