36 research outputs found

    On completeness of description of an equilibrium canonical ensemble by reduced s-particle distribution function

    Full text link
    In this article it is shown that in a classical equilibrium canonical ensemble of molecules with ss-body interaction full Gibbs distribution can be uniquely expressed in terms of a reduced s-particle distribution function. This means that whenever a number of particles NN and a volume VV are fixed the reduced ss-particle distribution function contains as much information about the equilibrium system as the whole canonical Gibbs distribution. The latter is represented as an absolutely convergent power series relative to the reduced ss-particle distribution function. As an example a linear term of this expansion is calculated. It is also shown that reduced distribution functions of order less than ss don't possess such property and, to all appearance, contain not all information about the system under consideration.Comment: This work was reported on the International conference on statistical physics "SigmaPhi2008", Crete, Greece, 14-19 July 200

    Best approximation by downward sets with applications

    Get PDF
    We develop a theory of downward sets for a class of normed ordered spaces. We study best approximation in a normed ordered space X by elements of downward sets, and give necessary and sufficient conditions for any element of best approximation by a closed downward subset of X. We also characterize strictly downward subsets of X, and prove that a downward subset of X is strictly downward if and only if each its boundary point is Chebyshev. The results obtained are used for examination of some Chebyshev pairs (W,x), where x E X and W is a closed downward subset of X.C

    Positive projections and conditional mathematical expectations

    No full text

    Optimal joint control

    No full text

    Stability of the force-free motions of a dual- spin spacecraft.

    No full text

    Multiplication of random norms

    No full text
    corecore