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Abstract

We develop a theory of downward subsets of a Banach lattice X with a strong
unit. We study best approximation in X by elements of downward sets, and give
necessary and sufficient conditions for any element of best approximation by a closed
subset of X. We also characterize strictly downward subsets of X, and prove that a
downward subset of X is strictly downward if and only if each its boundary point is
Chebyshev. The results obtained are used for examination of some proximinal and
Chebyshev pairs (U, x) where U is a closed subset of X.
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1 Introduction

The theory of best approximation by elements of convex and reverse convex
sets (that is, complements of convex sets) is well-developed and has found
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applications in many areas of mathematics. However, convexity is sometimes
a very restrictive assumption, so there is a clear need to study the best ap-
proximation by not necessarily convex sets.

In this paper we develop a theory of best approximation by elements of closed
downward sets in a Banach lattice X with a strong unit. We show that a closed
downward set is proximinal, that is a best approximation by this set exists for
each x ∈ X and derive necessary and sufficient conditions for the uniqueness
of best approximation. A downward set is not necessarily convex. We show
that this set is abstract convex with respect to a certain set of elementary
functions (see e.g. [2,6] for the definition of abstract convexity. This fact allows
us to examine separation properties of downward sets and gives necessary and
sufficient conditions for best approximation. (A finite dimensional version of
separation results can be found in [1].)

We show that the results obtained for downward sets can be used in more
general situation. In particular we give necessary and sufficient conditions for
best approximation of some points by arbitrary closed sets. We also examine
best approximation by the so-called normal sets.

The structure of the paper is as follows. In Section 2, we recall main defini-
tions. In Section 3, we investigate best approximation in X by elements of
downward sets.In particular, we show that the least element of the set of best
approximations exists. In section 4, we present the characterizations of down-
ward sets in terms of separation from outside points. Strictly downward sets
and strictly downward at a point sets are studied in Section 5. In this section
we also introduce a notion of a Chebyshev point and show that a point of a
downward set W is Chebyshev if and only if W is strictly downward at this
point. Connections between downward subsets of X and normal subsets of
the cone X+ based on the notion of the downward hull of a normal set, are
investigated in section 6. In section 7, we introduce notions of a proximinal
pair and a Chebyshev pair and study these pairs by means of the downward
hull of a corresponding set.

2 Preliminaries

Let X be a normed vector space. For a nonempty subset W of X and x ∈ X,
define

d(x,W ) = inf
w∈W

‖x− w‖.

Recall (see e.g. [7]) that a point w0 ∈ W is called a best approximation for
x ∈ X if

‖x− w0‖ = d(x, W ).
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If each x ∈ X has at least one best approximation w0 ∈ W, then W is called
a proximinal subset of X. If each x ∈ X has a unique best approximation
w0 ∈ W, then W is called a Chebyshev subset of X.

Let W ⊂ X. For x ∈ X, denote by PW (x) the set of all best approximations
of x in W :

PW (x) = {w ∈ W : ‖x− w‖ = d(x,W )}. (2.1)

It is well-known that PW (x) is a closed and bounded subset of X. If x /∈ W
then PW (x) is located in the boundary of W .

In this paper we shall study best approximation in Banach lattices with the
strong unit. Let X be a vector lattice. Recall (see e.g [8]) that an element
1 ∈ X is called a strong unit if for each x ∈ X there exists 0 < λ ∈ R such
that x ≤ λ1. Using a strong unit 1 we can define a norm on X by

‖x‖ = inf{λ > 0 : |x| ≤ λ1} ∀ x ∈ X. (2.2)

Then

B(x, r) := {y ∈ X : ‖x− y‖ ≤ r} = {y ∈ X : x− r1 ≤ y ≤ x + r1}. (2.3)

We have also
|x| ≤ ‖x‖1 for all x ∈ X. (2.4)

It is well known that X equipped with the norm (2.2) is a Banach lattice and
there exists a compact topological space Q such that X is isomorphic (as a
vector lattice) and isometric to the space of all real-valued continuous functions
C(Q) with the norm ‖x‖ = maxq∈Q |x(q)|. Well-known examples of Banach
lattices with the strong units are the lattice of all bounded functions defined
on a set X and the lattice L∞(S, Σ, µ) of all essentially bounded functions
defined on a space S with a σ-algebra of measurable sets Σ and a measure µ.

We shall study in this paper downward sets. Recall that a subset W of an
ordered set X is said to be downward, if (w ∈ W,x ≤ w) =⇒ x ∈ W.

For any subset W of a normed space X, we shall denote by intW, cl W, and
bd W the interior, the closure and the boundary of W, respectively. If X is a
lattice and there exists the least element of W, we shall denote it by minW.

3 Downward sets and their approximation properties

Let X be a Banach lattice with a strong unit 1.
Proposition 3.1. Let W be a downward subset of X and x ∈ X. Then the
following are true:
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(1) If x ∈ W, then x− ε1 ∈ intW for all ε > 0.
(2) We have intW = {x ∈ X : x + ε1 ∈ W for some ε > 0}.

Proof: (1). Let ε > 0 be given and x ∈ W. Let

V = {y ∈ X : ‖y − (x− ε1)‖ < ε}

be an open neighborhood of (x− ε1). Then, by (2.3) V = {y ∈ X : x− 2ε1 <
y < x}. Since W is a downward set and x ∈ W, it follows that V ⊂ W, and so
x− ε1 ∈ int W.

(2). Let x ∈ int W. Then there exists ε0 > 0 such that the closed ball B(x, ε0) ⊂
W. In view of (2.3), x + ε01 ∈ W.

Conversely, suppose that there exists ε > 0 such that x + ε1 ∈ W. Then, by
the above, x = (x + ε1)− ε1 ∈ int W, which completes the proof.
Corollary 3.1. Let W be a closed downward subset of X and w ∈ W. Then,
w ∈ bdW if and only if λ1 + w /∈ W for all λ > 0.
Lemma 3.1. Let W be a closed downward subset of X. Then W is proximinal
in X.

Proof: Let x0 ∈ X \W be arbitrary and r := d(x0,W ) = infw∈W ‖x0−w‖ > 0.
This implies that for each ε > 0 there exists wε ∈ W such that ‖x0 − wε‖ <
r + ε. Then, by (2.3) we have

−(r + ε)1 ≤ wε − x0 ≤ (r + ε)1.

Let w0 = x0 − r1. Then, we have

‖x0 − w0‖ = ‖r1‖ = r = d(x0,W )

and so w0 − ε1 = x0 − r1 − ε1 ≤ wε. Since W is downward and wε ∈ W, it
follows that w0 − ε1 ∈ W for all ε > 0. Since W is closed, we have w0 ∈ W,
and so w0 ∈ PW (x0). Thus the result follows.
Remark 3.1. We proved that for each x0 ∈ X \W the set PW (x0) contains
the element w0 = x0 − r1 with r = d(x0,W ). If x0 ∈ W then w0 = x0 and
PW (x0) = {w0}.
Proposition 3.2. Let W be a closed downward subset of X and x0 ∈ X. Then
there exists the least element w0 := min PW (x0) of the set PW (x0), namely,
w0 = x0 − r1, where r := d(x0,W ).

Proof: If x0 ∈ W, then the result holds. Assume that x0 /∈ W and w0 = x0−r1.
Then, by Remark 3.1, we have w0 ∈ PW (x0). Since Applying (2.3) and the
equality ‖x0 − w0‖ = r we get

x ≥ x0 − r1 = w0 ∀ x ∈ B(x0, r).

This implies that w0 is the least element of the closed ball B(x0, r).
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Now, let w ∈ PW (x0) be arbitrary. Then, ‖x0 − w‖ = r, and so w ∈ B(x0, r).
Therefore, w ≥ w0. Hence, w0 is the least element of the set PW (x0).
Corollary 3.2. Let W be a closed downward subset of X, x0 ∈ X and w0 =
min PW (x0). Then, w0 ≤ x0.
Corollary 3.3. Let W be a closed downward subset of X and x ∈ X be
arbitrary. Then

d(x, W ) = min{λ ≥ 0 : x− λ1 ∈ W}.

Proof: Let A = {λ ≥ 0 : x−λ1 ∈ W}. If x ∈ W, then x−01 = x ∈ W, and so
min A = 0 = d(x,W ). Suppose that x /∈ W then r := d(x,W ) > 0. Let λ > 0
be arbitrary such that x− λ1 ∈ W. Thus, we have

λ = ‖λ1‖ = ‖x− (x− λ1)‖ ≥ d(x,W ) = r.

Since, by Proposition 3.2, x−r1 ∈ W, it follows that r ∈ A. Hence, min A = r,
which completes the proof.

4 Characterization of best approximations by downward sets

Let ϕ : X ×X −→ R be a function defined by

ϕ(x, y) := sup{λ ∈ R : λ1 ≤ x + y} ∀ x, y ∈ X. (4.1)

Since 1 is a strong unit it follows that the set {λ ∈ R : λ ≤ x+y} is nonempty
and bounded from above (by the number ‖x + y‖). Clearly this set is closed.
It follows from the aforesaid and the definition of ϕ that the function ϕ enjoys
the following properties:

−∞ < ϕ(x, y) ≤ ‖x + y‖ for each x, y ∈ X (4.2)

ϕ(x, y)1 ≤ x + y for all x, y ∈ X (4.3)

ϕ(x, y) = ϕ(y, x) for all x, y ∈ X; (4.4)

ϕ(x,−x) = sup{λ ∈ R : λ1 ≤ x− x = 0} = 0 for all x ∈ X. (4.5)

For each y ∈ X, define the function ϕy : X −→ R by

ϕy(x) := ϕ(x, y) ∀ x ∈ X. (4.6)

The function f : X → R is called topical if this function is increasing (x ≥
y =⇒ f(x) ≥ f(y)) and plus-homogeneous (f(x + α1) = f(x) + α for all
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x ∈ X and α ∈ R). The definition of topical function in finite dimensional
case can be found in [4].
Lemma 4.1. The function ϕy defined by (4.6) is topical.

Proof: (1). Let x, z ∈ X with x ≤ z. Then {λ ∈ R : λ1 ≤ x + y} ⊂ {λ ∈ R :
λ1 ≤ z + y}. Hence,

ϕy(x) = sup{λ ∈ R : λ1 ≤ x + y} ≤ sup{λ ∈ R : λ1 ≤ z + y} = ϕy(z).

(2). Let x ∈ X and α ∈ R be arbitrary. Then

ϕy(x + α1) = sup{λ ∈ R : λ1 ≤ x + α1 + y}
= sup{λ ∈ R : (λ− α)1 ≤ x + y}
= sup{β + α ∈ R : β1 ≤ x + y}
= sup{β ∈ R : β1 ≤ x + y}+ α = ϕy(x) + α.

Proposition 4.1. The function ϕy is Lipschitz continuous.

Proof: Let x, z ∈ X be arbitrary. Since |x− z| ≤ ‖x− z‖1 it follows that

z − ‖x− z‖1 ≤ x ≤ z + ‖x− z‖1.

In view of Lemma 4.1 we have

ϕy(z)− ‖x− z‖ ≤ ϕy(x) ≤ ϕy(z) + ‖x− z‖,

and hence
|ϕy(x)− ϕy(z)| ≤ ‖x− z‖. (4.7)

Therefore, ϕy is Lipschitz continuous.
Corollary 4.1. The function ϕ defined by (4.1) is continuous. It follows from
(4.7).
Lemma 4.2. Let W be a closed downward subset of X, y0 ∈ bdW and let ϕ
be the function defined by (4.1). Then, ϕ(w,−y0) ≤ 0 for all w ∈ W.

Proof: Assume that there exists w0 ∈ W such that ϕ(w0,−y0) > 0. Then
sup{λ ∈ R : λ1 ≤ w0−y0} > 0 so there exists λ0 > 0 such that λ01 ≤ w0−y0.
This means that λ01 + y0 ≤ w0. Since W is a downward set and w0 ∈ W,
it follows that λ01 + y0 ∈ W. Therefore, by Proposition 3.1 (2), we have
y0 ∈ int W. This is a contradiction, which completes the proof.

We now give characterizations of downward sets in terms of separation from
outside points. The proof of the following Theorem is similar to that in [4]
(see Proposition 2.1) for a finite dimensional case. For an easy reference we
present a version of this proof.
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Theorem 4.1. Let W be a subset of X and ϕ be the coupling function of
(4.1). Then the following are equivalent:

(1) W is a downward set.
(2) For each x ∈ X \W, we have

ϕ(w,−x) < 0 ∀ w ∈ W.

(3) For each x ∈ X \W, there exists l ∈ X such that

ϕ(w, l) < 0 ≤ ϕ(x, l) ∀ w ∈ W.

Proof: (1) =⇒ (2). Suppose that (1) holds and that there exist x ∈ X \W
and w ∈ W such that ϕ(w,−x) ≥ 0. Then, by (4.3) we have 0 ≤ ϕ(w,−x)1 ≤
w−x, and so x ≤ w. Since W is downward and w ∈ W, it follows that x ∈ W.
This is a contradiction.

(2) =⇒ (3). Assume that (2) holds and x ∈ X \ W is arbitrary. Then, by
hypothesis, we have

ϕ(w,−x) < 0 ∀ w ∈ W.

Now, let l = −x ∈ X. Using (4.5) we have for each w ∈ W :

ϕ(w, l) = ϕ(w,−x) < 0 = ϕ(x,−x) = ϕ(x, l).

(3) =⇒ (1). Suppose that (3) holds and W is not a downward set. Then there
exist w0 ∈ W and x0 ∈ X \W with x0 ≤ w0. It follows, by hypothesis, that
there exists l ∈ X such that

ϕ(w, l) < 0 ≤ ϕ(x0, l) ∀ w ∈ W. (4.8)

Since ϕ(., l) is increasing, we have

0 ≤ ϕ(x0, l) ≤ ϕ(w0, l).

This contradicts (4.8).
Theorem 4.2. Let ϕ be the function defined by (4.1). Then for a subset W
of X the following are equivalent:

(1) W is a closed downward subset of X.

(2) W is downward, and for each x ∈ X the set

H = {λ ∈ R : x + λ1 ∈ W}
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is closed in R.

(3) For each x ∈ X \W, there exists l ∈ X such that

ϕ(w, l) < 0 < ϕ(x, l), (w ∈ W ).

(4) For each x ∈ X \W, there exists l ∈ X such that

sup
w∈W

ϕ(w, l) < ϕ(x, l).

Proof: (1) =⇒ (2). Assume that (1) holds and let x ∈ X, λk ∈ R, x+λk1 ∈ W
(k = 1, 2, · · · ) and λk −→ λ ∈ R. Then, we have

‖(x + λk1)− (x + λ1)‖ = ‖(λk − λ)1‖ = |λk − λ| −→ 0 as k −→ +∞.

Since x+λk1 ∈ W (k = 1, 2, · · · ) and W is closed, it follows that x+λ1 ∈ W,
and so λ ∈ H. Hence, H is a closed subset of R.

(2) =⇒ (3). Suppose that (2) holds and x ∈ X \W is arbitrary. We claim that
there exists λ0 > 0 such that −λ0 /∈ H. Indeed, if −λ ∈ H for all λ > 0. then
due to the closedness of H, we have 0 ∈ H. This implies x = x + 0 · 1 ∈ W.
This is a contradiction. Now, let l = λ01− x ∈ X. We show that ϕ(w, l) < 0
for all w ∈ W. Assume that there exists w0 ∈ W such that ϕ(w0, l) ≥ 0. Then
by (4.3) we have 0 ≤ ϕ(w0, l)1 ≤ w0 + l, and so w0 ≥ −l = x − λ01. Since
W is downward and w0 ∈ W, it follows that x − λ01 ∈ W, and consequently
−λ0 ∈ H. This is a contradiction. Hence, ϕ(w, l) < 0 for all w ∈ W .

On the other hand, we have

ϕ(x, l) = sup{λ ∈ R : λ1 ≤ x + l}
= sup{λ ∈ R : λ1 ≤ x + λ01− x = λ01}
= sup{λ ∈ R : (λ− λ0)1 ≤ 0} = sup{α + λ0 ∈ R : α1 ≤ 0}
= sup{α ∈ R : α1 ≤ 0}+ λ0 = λ0 > 0.

(3) =⇒ (4) is obvious.

(4) =⇒ (1). Suppose that (4) holds and that W is not downward. Then there
exist w0 ∈ W and x0 ∈ X \W with x0 ≤ w0. By hypothesis, there exists l ∈ X
such that

sup
w∈W

ϕ(w, l) < ϕ(x0, l).

Since ϕ(., l) is increasing, it follows that

ϕ(x0, l) ≤ ϕ(w0, l) ≤ sup
w∈W

ϕ(w, l) < ϕ(x0, l).
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This is a contradiction. Hence, W is a downward set.

Finally, assume that W is not closed. Then there exists a sequence {wn}n≥1 ⊂
W and x0 ∈ X \W such that ‖wn−x0‖ −→ 0 as n −→ +∞. Since x0 ∈ X \W,
by hypothesis, there exists l ∈ X such that

sup
w∈W

ϕ(w, l) < ϕ(x0, l).

Thus, we have
ϕ(wn, l) ≤ sup

w∈W
ϕ(w, l) ∀ n ≥ 1.

By continuity of ϕl = ϕ(., l) it follows that ϕ(x0, l) ≤ supw∈W ϕ(w, l). This is
a contradiction, which completes the proof.
Lemma 4.3. Let W be a closed downward subset of X, w0 ∈ bdW and l =
−w0. Let ϕ be defined by (4.1). Then

ϕ(w, l) ≤ 0 = ϕ(w0, l) ∀ w ∈ W.

Proof: Since w0 ∈ bd W, it follows, by Lemma 4.2, that

ϕ(w, l) = ϕ(w,−w0) ≤ 0 ∀ w ∈ W.

Also, we have

ϕ(w0, l) = sup{λ ∈ R : λ1 ≤ w0 + l} = sup{λ ∈ R : λ1 ≤ w0 − w0 = 0} = 0.

Consider an arbitrary set Y and a set L of functions defined on a set Y . We
need the following definition (see, e.g. [2,6]). A subset Ω of Y is called abstract
convex with respect to L if for each point y ∈ Y \ Ω there exists l ∈ L such
that supω∈Ω l(ω) < l(y).

Consider now the space X and the set L = {ϕy : y ∈ X} where ϕy is defined
by (4.6). Theorem 4.2 demonstrates that a set W ⊂ X is closed and downward
if and only if this set is abstract convex with respect to the set L.

5 Strictly downward sets and their approximation properties

We start with the following definition :
Definition 5.1. A downward subset W of X is called strictly downward if for
each boundary point w0 of W , the inequality w > w0 implies w /∈ W .

This definition was introduced in [5] for finite dimensional spaces. We now
present an example of a strictly downward set. Recall that a function f :

9



X −→ R is called increasing if x, y ∈ X with x ≤ y, implies f(x) ≤ f(y). A
function f : X −→ R is called strictly increasing at a point y ∈ X if x < y
implies f(x) < f(y). A function, which is strictly increasing at each point
y ∈ X is called strictly increasing on X. It is easy to check that f : X −→ R
is increasing if and only if its level sets Sc(f) = {x ∈ X : f(x) ≤ c} (c ∈ R)
are downward. (The empty set is downward by definition.) Let f : X −→ R
be a continuous strictly increasing function. If c ∈ R is a number such that the
level set Sc(f) is nonempty then the boundary bdSc(f) of this set coincides
with the set {x ∈ X : f(x) = c}.
Lemma 5.1. Let f : X −→ R be a continuous strictly increasing function.
Then all nonempty level sets Sc(f) (c ∈ R) of f are strictly downward.

Proof: Since f is continuous strictly increasing, it follows that

bdSc(f) = {x ∈ X : f(x) = c} (c ∈ R).

Let x ∈ bdSc(f) be arbitrary and y ∈ X with y > x. Since f is strictly
increasing and f(x) = c, then f(y) > f(x) = c, and so y /∈ Sc(f). Hence,
Sc(f) (c ∈ R) is strictly downward.
Definition 5.2. Let W be a downward set. We say that W is strictly down-
ward at a point w′ ∈ bdW if for all w0 ∈ bdW with w0 ≤ w′, the inequality
w > w0 implies w /∈ W .
Proposition 5.1. Let W be a closed downward set. Then W is strictly down-
ward at w′ ∈ bdW if and only if

(i) w > w′ =⇒ w /∈ W ;
(ii) (w0 ≤ w′, w0 ∈ bdW ) =⇒ w0 = w′.

Proof: Let W be strictly downward at w′ ∈ bd W ⊂ W . Then (i) holds, so
we need to check that relations w0 ≤ w′, w0 ∈ bd W imply w0 = w′. Assume
that w0 6= w′ then w′ > w0 and due to Definition 5.2 we have w′ /∈ W, which
is a contradiction.

Assume now that (i) and (ii) hold. Let w0 ∈ bd W and w0 ≤ w′. Then due to
(ii) we have w0 = w′ and due to (i) we have w > w0 implies w /∈ W .
Proposition 5.2. Let W be a closed downward set. Then W is strictly down-
ward if and only if W is strictly downward at each its boundary point.

Proof: Due to Proposition 5.1 we need only to show that for each strictly
downward set W and each boundary point w′ of W relations w0 ≤ w′, w0 ∈
bd W imply w0 = w′. This is true since the inequality w0 < w′ leads for strictly
downward sets to w′ /∈ W .
Proposition 5.3. Let ϕ be the function defined by (4.1). Let W be a closed
downward set that is strictly downward at a point w′ ∈ bdW . Then there exists
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unique l ∈ X such that

ϕ(w, l) ≤ 0 = ϕ(w′, l), ∀ w ∈ W.

Proof: Let l = −w′. Then, by Lemma 4.3, we have

ϕ(w, l) ≤ 0 = ϕ(w′, l) ∀ w ∈ W.

Now, suppose there exists l′ ∈ X such that

ϕ(w, l′) ≤ 0 = ϕ(w′, l′) ∀ w ∈ W. (5.1)

It follows, by (4.3) that 0 = ϕ(w′, l′)1 ≤ w′ + l′, and so −l′ ≤ w′. Since
W is downward and w′ ∈ W, we have −l′ ∈ W. Let ε > 0 be given and
lε = −l′ + ε1 ∈ X. Then,

ϕ(lε, l′) = sup{λ ∈ R : λ1 ≤ lε + l′}
= sup{λ ∈ R : λ1 ≤ −l′ + ε1 + l′ = ε1}
= sup{λ ∈ R : (λ− ε)1 ≤ 0} = sup{α + ε ∈ R : α1 ≤ 0}
= sup{α ∈ R : α1 ≤ 0}+ ε = ε > 0.

Due to (5.1) we have that lε := −l′+ε1 /∈ W for all ε > 0. Then, by Corollary
3.1, −l′ ∈ bd W. Since W is strictly downward at each its boundary point,
w′ ≥ −l′ and −l′ ∈ bd W , it follows from Proposition 5.1 that w′ = −l′.
Hence, l′ = l = −w′. Thus the result follows.
Theorem 5.1. Let ϕ be the function defined by (4.1). Then for a closed
downward subset W of X the following assertions are equivalent:

(1) W is strictly downward.
(2) for each w0 ∈ bdW there exists unique l ∈ X such that

ϕ(w, l) ≤ 0 = ϕ(w0, l) ∀ w ∈ W.

Proof: The implication (1) =⇒ (2) follows from Proposition 5.1 and Propo-
sition 5.3. We now prove the implication (2) =⇒ (1). Assume that for each
w0 ∈ bd W there exists unique l ∈ X such that

ϕ(w, l) ≤ 0 = ϕ(w0, l) ∀ w ∈ W.

Let w0 ∈ bd W and y ∈ X with y > w0. Assume that y ∈ W . Since y > w0,
it follows that λ1 < y − w0 for all λ < 0. This implies that

y + λ1 > w0 ∀ λ > 0. (5.2)
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We claim that y + λ1 /∈ W for all λ > 0. Suppose that there exists λ0 > 0
such that y + λ01 ∈ W. Let

V = {x ∈ X : ‖x− w0‖ ≤
1
2
λ0}.

It is clear that V is a neighborhood of w0. By (2.3) we have

V = {x ∈ X : w0 −
1
2
λ01 ≤ x ≤ w0 +

1
2
λ01}.

Applying (5.2) we conclude that

x ≤ w0 +
1
2
λ01 < y +

1
2
λ01 +

1
2
λ01 = y + λ01,

for each x ∈ V. Since W is downward and y+λ01 ∈ W, it follows that V ⊂ W,
and so w0 ∈ int W. This is a contradiction, and hence the claim is true.

Then, by Corollary 3.1, y ∈ bd W. Let l = −y. It follows from Lemma 4.3 that

ϕ(w, l) ≤ 0 = ϕ(y, l) ∀ w ∈ W. (5.3)

On the other hand, applying Lemma 4.3 to the point w0 we have for l′ = −w0:

ϕ(w, l′) ≤ 0 = ϕ(w0, l′) ∀ w ∈ W. (5.4)

Since w0 < y and ϕ(., l′) is increasing, it follows that 0 = ϕ(w0, l′) ≤ ϕ(y, l′) ≤
0. This, together with (5.4) imply that

ϕ(w, l′) ≤ 0 = ϕ(y, l′) ∀ w ∈ W. (5.5)

. Since w0 6= y it follows that l′ 6= l, hence (5.3) and (5.5) contradict the
uniqueness of l. We have demonstrated that the assumption y ∈ W leads to
contradictions. Thus y /∈ W . This means that W is strictly downward.
Corollary 5.1. Let f : X −→ R be a continuous strictly increasing function
and ϕ be the function defined by (4.1). Then for each x ∈ X there exists
unique l = −x such that

ϕ(w, l) ≤ 0 = ϕ(x, l) ∀ w ∈ Sc(f).

Proof: This is an immediate consequence of Lemma 5.1 and Theorem 5.1.
Definition 5.3. Let W be a downward set. A point w′ ∈ bdW is said to be a
Chebyshev point if for each w0 ∈ bdW with w0 ≤ w′ and for each x0 /∈ W such
that w0 ∈ PW (x0) it follows that PW (x0) = {w0}, that is best approximation
of x0 is unique.
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Theorem 5.2. Let W be a closed downward subset of X and w′ ∈ bdW . Then
the following assertions are equivalent:

(1) w′ is a Chebyshev point of W .
(2) W is a strictly downward set at w′.

Proof: (1) =⇒ (2). Suppose that (1) holds and that W is not strictly down-
ward at w′. Then we can find w0 ∈ bd W such that w0 ≤ w′ and there exists
w ∈ W with w > w0. Let r ≥ ‖w − w0‖ > 0. It follows from (2.4) that

w − w0 ≤ |w − w0| ≤ ‖w − w0‖1 ≤ r1,

so w ≤ w0 + r1. Let x0 = w0 + r1 ∈ X. Then ‖x0 − w0‖ = ‖r1‖ = r.

We claim that d(x0, W ) = r. Suppose this does not hold. Then there exists
y ∈ W such that ‖x0 − y‖ < r. ( We have x0 6= y, otherwise x0 = y ∈ W .)
Then there exists r0 ∈ (0, r) such that ‖x0− y‖ ≤ r0. Hence, by (2.3) we have
x0 ≤ y + r01. Since x0 = w0 + r1, it follows that

w0 + λ01 ≤ y with λ0 = (r − r0) > 0.

Since W is downward and y ∈ W, it follows that w0 + λ01 ∈ W, and so, by
Proposition 3.1 (2), w0 ∈ int W. This is a contradiction. Therefore, d(x0,W ) =
r = ‖x0 − w0‖, that is, w0 ∈ PW (x0).

On the other hand, we have w ≤ w0 + r1 = x0. Since w0 < w it follows that
0 ≤ x0 − w < x0 − w0 = r1. Hence,

‖x0 − w‖ ≤ ‖r1‖ = r = d(x0,W ) ≤ ‖x0 − w‖.

Then, ‖x0 − w‖ = d(x0,W ), and so w ∈ PW (x0) with w 6= w0. Thus there
exists a point w0 ∈ bd W with w0 ≤ w′ such that PW (x0) contains w0 and also
at least one point different from w0. This is impossible since w′ is a Chebyshev
point.

(2) =⇒ (1). Assume that W is strictly downward at point w′ ∈ bd W . Then
for each point w0 ≤ w′, w0 ∈ bd W we have w0 = w′. So we need only to
check that PW (x0) = {w′} for each x0 /∈ W such that w′ ∈ PW (x0). Let x0 be
such an element. Applying Proposition 3.2, we conclude that the least element
w0 of the set PW (x0) exists and w0 = x0 − r1 with r = d(x0,W ). We have
w0 ∈ bd W,w0 ≤ w′, hence w0 = w′. Since W is strictly downward at w0 = w′,
w ≥ w′ for all w ∈ PW (x0) ⊂ W, we have in view of Proposition 5.1 that
w′ = w for all w ∈ PW (x0). Hence, PW (x0) = {w′}, and so w′ is a Chebyshev
point of W .
Corollary 5.2. Let f : X −→ R be a continuous strictly increasing function.
Then, Sc(f) is a Chebyshev subset of X.
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Proof: This is an immediate consequence of Lemma 5.1 and Theorem 5.2.

6 Connection between downward sets, normal sets, and their ap-
proximation properties

In the rest of the paper we will apply the results obtained in previous sections
for examination of best approximation by some closed subsets of the space
X. We will use for this purpose the downward hall U∗ of a set U ⊂ X. By
definition U∗ coincides with the intersection of all downward sets containing
U . Since the intersection of an arbitrary family of downward sets is downward
it follows that U∗ is downward. Clearly U∗ is the least (by inclusion) downward
set, which contains U .
Proposition 6.1. ([6], Proposition 2.3) Let U ⊂ X. Then U∗ = U −X+ :=
{u− v : u ∈ U, v ≥ 0}.

In this section we use the results obtained for the examination of best ap-
proximation by normal sets. Recall (see, for example, [2,3]) that a subset
G of the positive cone X+ := {x ∈ X : x ≥ 0} is called normal, if (g ∈
G, x ∈ X+, x ≤ g) =⇒ x ∈ G. For any subset A of X we shall use the
notation A+ = {a+ : a ∈ A}, where a+ = sup(a, 0). We also use notation
a− = − inf(a, 0).
Proposition 6.2. Let G be a normal subset of X+ and G∗ ⊂ X be the down-
ward hull of the set G. Then the following are true:
(1) G∗ = {x ∈ X : x+ ∈ G}.
(2) G = G∗ ∩X+.
(3) G is closed if and only if G∗ is closed.
(4) (G∗)+ = G.

This proposition was proved in [1,2] for finite dimensional space X. The proof
from [1,2] is valid also in the case under consideration so we omit this proof.
Proposition 6.3. Let y0 ∈ X and x0 ∈ X+. Then ‖x0 − y0‖ ≥ ‖x0 − y0

+‖.

Proof: We have x0 = x0
+ and y0 = y0

+ − y0
−. Then

x0 − y0 = (x0 + y0
−)− y0

+.

Therefore,

|x0 − y0| = (x0 − y0)+ + (x0 − y0)− = (x0 + y0
−) + y0

+

= (x0 + y0
+) + y0

− ≥ (x0 + y0
+) = |x0 − y0

+|.
Hence, ‖x0 − y0‖ ≥ ‖x0 − y0

+‖.
Corollary 6.1. Let G ⊂ X+ be a normal set and G∗ ⊂ X be the downward
hull of G, and x0 ∈ X+. Then, d(x0, G∗) = d(x0, G).
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Proof: Since G ⊂ G∗, we have d(x0, G∗) ≤ d(x0, G). On the other hand,
let g ∈ G∗ be arbitrary. Then, g+ ∈ G ( by Proposition 6.2). Therefore, by
Proposition 6.3, it follows that

‖x0 − g‖ ≥ ‖x0 − g+‖ ≥ d(x0, G) ∀ g ∈ G∗.

Hence, d(x0, G∗) ≥ d(x0, G). Consequently, d(x0, G) = d(x0, G∗).
Proposition 6.4. Let G be a closed normal subset of X+ and x0 ∈ X+. Then
there exists the least element g0 := min PG(x0) of the set PG(x0), namely,
g0 = w0

+, where w0 is the least element of the set PG∗(x0) and G∗ ⊂ X is the
downward hull of G.

Proof: Since G is closed in X+, it follows, by Proposition 6.2, that G∗ is
closed in X. Then, by Proposition 3.2, w0 = x0 − r1 the least element of
the set PG∗(x0) exists, where r := d(x0, G∗). Also, by Corollary 6.1, we have
r = d(x0, G∗) = d(x0, G).

Now, let g0 = w0
+ = (x0 − r1)+. Since w0 ∈ G∗, by Proposition 6.2, we have

g0 = w0
+ ∈ G, and hence

‖x0 − g0‖ = ‖x0 − w0
+‖ ≥ d(x0, G) = r.

On the other hand, by Proposition 6.3, we have

r = d(x0, G∗) = ‖x0 − w0‖ ≥ ‖x0 − w0
+‖ = ‖x0 − g0‖.

Hence, ‖x0 − g0‖ = r = d(x0, G), and so g0 ∈ PG(x0). Let g ∈ PG(x0) be
arbitrary. Then, ‖x0 − g‖ = d(x0, G) = r = d(x0, G∗). Since g ∈ G ⊂ G∗,
it follows that g ∈ PG∗(x0), and so g ≥ w0. Since also g ≥ 0 we have g ≥
sup(w0, 0) = w0

+ = g0. Hence, g0 = w0
+ is the least element of the set PG(x0).

Theorem 6.1. Let G be a closed normal subset of X+, G∗ ⊂ X be the down-
ward hull of G and x0 ∈ X. Then, d(x0, G∗) = d(x0

+, G).

Proof: Let w ∈ G∗ be arbitrary and w = w+−w−. Then, by Proposition 6.2,
w+ ∈ G. Since

|x0 − w| = |x0
+ − w+|+ |x0

− − w−| ≥ |x0
+ − w+|

it follows that

‖x0 − w‖ ≥ ‖x0
+ − w+‖ ≥ d(x0

+, G) ∀ w ∈ G∗.

Then, d(x0, G∗) ≥ d(x0
+, G). On the other hand, since G is a closed normal

subset of X+ and x0
+ ∈ X+, it follows, by Proposition 6.4, that g0 = (x0

+ −
r1)+ the least element of the set PG(x0

+) exists, where r := d(x0
+, G∗).
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Now, define
gx0 = g0 − x0

−.

Thus, we have (because x0
− ≥ 0) gx0 ≤ g0. Since G∗ is downward and g0 ∈

G ⊂ G∗, it follows that gx0 ∈ G∗. Also, we have x0 − gx0 = x0
+ − g0. Hence,

d(x0, G∗) ≤ ‖x0 − gx0‖ = ‖x0
+ − g0‖ = d(x0

+, G). Consequently, we have
d(x0, G∗) = d(x0

+, G).

Using Proposition 6.4 and Theorem 6.1 we can extend results obtained for
downward sets in previous sections for best approximation by normal sets.

7 Proximinal and Chebyshev pairs

Definition 7.1. Let U ⊂ X and x ∈ X. We say that a pair (U, x) is a
proximinal, if there exists a best approximation of x by U . A proximinal pair
is called Chebyshev if there is a unique best approximation of x by U .

In this section we shall study some proximinal and Chebyshev pairs. We shall
use the function p define on X by

p(x) = inf{λ ∈ R : x ≤ λ1} ∀ x ∈ X.

Since the set {λ ∈ R : x ≤ λ1} is closed and bounded, it follows that p(x) =
min{λ ∈ R : x ≤ λ1}, hence x ≤ p(x)1. We have

‖x‖ = max(p(x), p(−x)) (x ∈ X).

Indeed, assume for the sake of definiteness that p(x) ≥ p(−x). Then, x ≤
p(x)1, −x ≤ p(−x)1 ≤ p(x)1 and p(x) is the least number λ such that both
x ≤ λ1, −x ≤ λ1, hence ‖x‖ = p(x) = max(p(x), p(−x)).

It is well-known and easy to check that:

1) p is sublinear: p(x + y) ≤ p(x) + p(y) for all x, y ∈ X.
2) p is increasing.
3) p(x + µ1) = p(x) + µ for all x ∈ X and all µ ∈ R. In particular, p(1) =

p(0 + 1) = 1.

Now, consider the set

Z = {z ∈ X : p(z) ≥ p(−z)}.

We have

−Z = {z ∈ X : −z ∈ Z} = {z ∈ X : p(−z) ≥ p(z)}.
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Clearly, Z ∪ (−Z) = X and Z ∩ (−Z) = {z ∈ X : p(z) = p(−z)}. It is easy
to check that (intZ) ∩ (int (−Z)) = ∅. The set Z is upward. Indeed, assume
that z ∈ Z and x ∈ X with z ≤ x. Since p is increasing, it follows that

p(x) ≥ p(z) ≥ p(−z) ≥ p(−x),

and hence x ∈ Z. Also, we have ‖z‖ = p(z) for all z ∈ Z.

Recall that the Banach lattice X with a strong unit is isomorphic and isometric
to the space C(Q) of all real-valued continuous functions defined on a compact
topological space Q. If X = C(Q) then

p(x) = max
q∈Q

x(q), p(−x) = −min
q∈Q

x(q),

and
‖x‖ = max(max

q∈Q
x(q),−min

q∈Q
x(q)) = max

q∈Q
|x(q)| (x ∈ X).

We also have
Z = {x ∈ C(Q) : max

q∈Q
x(q) ≥ −min

q∈Q
x(q)}.

Lemma 7.1. Let ϕ be the function defined by (4.1). Then

ϕ(x, y) = −p(−x− y) ∀ x, y ∈ X.

Proof: We have for all x, y ∈ X :

ϕ(x, y) = sup{λ ∈ R : λ1 ≤ x + y} = sup{λ ∈ R : −x− y ≤ −λ1}
= sup{−α ∈ R : −x− y ≤ α1} = − inf{α ∈ R : −x− y ≤ α1}
=−p(−x− y).

Let U be an arbitrary closed subset of X and let U∗ be the downward hull of
U.
Proposition 7.1. Let x0 ∈ X be an element such that x0 − U ⊂ Z. Then,
d(x0, U) = d(x0, U∗).

Proof: Let r = d(x0, U∗). Since U ⊂ U∗ it follows that r ≤ d(x0, U), so we
need only to check the reverse inequality. Let u∗ ∈ U∗. Then, by Proposition
6.1, there exists u ∈ U and v ≥ 0 such that u∗ = u − v. Hence, x0 − u∗ =
x0 − u + v = x1 − u with x1 ≥ x0. By hypothesis, we have x0 − u ∈ Z. Since
x1 ≥ x0 and Z is upward, it follows that x1 − u ∈ Z. Since ‖z‖ = p(z) for all
z ∈ Z and p is increasing, we have

‖x0 − u∗‖ = ‖x1 − u‖ = p(x1 − u) ≥ p(x0 − u) = ‖x0 − u‖.

Thus for each u∗ ∈ U∗ there exists u ∈ U such that ‖x0 − u∗‖ ≥ ‖x0 − u‖.
This means that r := d(x0, U∗) ≥ d(x0, U). We proved that d(x0, U) = r.
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Proposition 7.2. Let x0 ∈ X be an element such that x0−U ⊂ Z and let U∗
be a closed set. Then (U, x0) is a proximinal pair.

Proof: Since U∗ is a closed downward set in X, it follows, by Proposition 3.2,
that the least element w0 of the set PU∗(x0) exists and w0 = x0 − r1, where
r = d(x0, U∗). In view of Proposition 7.1 we have r = d(x, U). Since w0 ∈ U∗,
by Proposition 6.1, there exist u ∈ U and v ≥ 0 such that w0 = x0−r1 = u−v.
We have x0 − u = r1− v. Applying properties of p we conclude that

p(x0 − u) = p(r1− v) ≤ p(r1) = r.

Since, by hypothesis, x0 − u ∈ Z, it follows that ‖x0 − u‖ = p(x0 − u) ≤ r.
On the other hand, ‖x0 − u‖ ≥ d(x0, U) = r. Hence, ‖x0 − u‖ = r, and so
u ∈ PU(x0), which completes the proof.
Example 7.1. (i). Let U∗ be closed and let U be bounded from above, then −U
is bounded from below. Since Z is upward, it follows that for all large enough
elements x0, we have x0 − U ⊂ Z, hence the best approximation by U exists.
(ii). Let U∗ be closed and let U ⊂ (−Z) and x0 ≥ 0. Then, −U ⊂ Z. Since
Z is upward, it follows that x0 − U ⊂ Z, hence the best approximation by U
exists.

We now indicate some classes of sets U for which the downward hull U∗ is
closed.

1) Let U be a compact set. Then U∗ = U −X+ is closed.
2) Let U be a closed normal subset of X+. Then U∗ is closed. It follows from

Proposition 6.2.
3) Assume that there exists a set V such that V ⊂ U ⊂ V∗ and V∗ is closed.

Then U∗ = V∗, hence U∗ is closed. In particular U∗ is closed if there exists
either compact or closed normal set V such that V ⊂ U ⊂ V∗.

Using results obtained for downward sets, we can prove the following fact.
Theorem 7.1. Let (U, x0) be a proximinal pair and let x0−U ⊂ Z. Let u0 ∈ U
and r0 := ‖x0− u0‖. Assume that ϕ is the function defined by (4.1). Then the
following assertions are equivalent:

(1) u0 ∈ PU(x0).
(2) There exists l ∈ X such that

ϕ(u, l) ≤ 0 ≤ ϕ(y, l) ∀ u ∈ U, y ∈ B(x0, r0). (7.1)

Moreover, if (7.1) holds with l = −u0, then, u0 = min PU(x0).

Proof: (1) =⇒ (2). Suppose that u0 ∈ PU(x0). Then, r0 = ‖x0 − u0‖ =
d(x0, U). Consider the closure clU∗ of the downward hull U∗. It is easy to
check that clU∗ is downward. Using Proposition 3.1 we can easily prove
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that d(x0, U∗) = d(x0, cl U∗). Applying Proposition 7.1, we conclude that
d(x0, cl U∗) = d(x0, U∗) = d(x0, U) = r0. Since u0 ∈ PU(x0) it follows that
u0 ∈ PclU∗

(x0). In view of Proposition 3.2, the least element w0 = x0− r01 of
the set PclU∗

(x0) exists. Let l = −w0 ∈ X and let y ∈ B(x0, r0) be arbitrary.
Thus, by (2.3) we have −r01 ≤ y−x0. This implies that −r0 ∈ {α ∈ R : α1 ≤
y − x0}. Therefore,

ϕ(y, l) = sup{λ ∈ R : λ1 ≤ y + l} = sup{λ ∈ R : λ1 ≤ y − w0}
= sup{λ ∈ R : λ1 ≤ y − (x0 − r01)}
= sup{λ ∈ R : (λ− r0)1 ≤ y − x0}
= sup{α + r0 ∈ R : α1 ≤ y − x0}
= sup{α ∈ R : α1 ≤ y − x0}+ r0

≥−r0 + r0 = 0.

On the other hand, since w0 ∈ PclU∗
(x0), it follows that w0 ∈ bd cl U∗. Then,

by Lemma 4.2, we have ϕ(u∗,−w0) ≤ 0 for all u∗ ∈ cl U∗, and so ϕ(u, l) ≤ 0
for all u ∈ U because U ⊂ cl U∗.

(2) =⇒ (1). Assume that there exists l ∈ X such that

ϕ(u, l) ≤ 0 ≤ ϕ(y, l) ∀ u ∈ U, y ∈ B(x0, r0).

Due to (2.3) we have

B(x0, r0) = {y ∈ X : x0 − r01 ≤ y ≤ x0 + r01}.

This implies that x0−r01 ∈ B(x0, r0). Then, by hypothesis, ϕ(x0−r01, l) ≥ 0,
and hence, since ϕ(., l) is topical, we have ϕ(x0, l) ≥ r0. Due to (4.3) we get

r01 ≤ ϕ(x0, l)1 ≤ x0 + l. (7.2)

Now, let u ∈ U be arbitrary. Then x0−u ∈ Z, and hence ‖x0−u‖ = p(x0−u).
But, by Lemma 7.1, we have

ϕ(x, y) = −p(−x− y) ∀ x, y ∈ X.

Since ϕ(u, .) is topical, using hypothesis and (7.2) we have

−‖x0 − u‖ = ϕ(u,−x0) ≤ ϕ(u, l − r01) = ϕ(u, l)− r0 ≤ 0− r0 = −r0.

Thus, r0 ≤ ‖x0−u‖ for all u ∈ U. This implies that ‖x0−u0‖ = d(x0, U), and
hence u0 ∈ PU(x0).

Finally, suppose that (7.1) holds with l = −u0. Then, by the implication
(2) =⇒ (1), we have u0 ∈ PU(x0). Now, let u ∈ PU(x0) be arbitrary. Thus,
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‖x0 − u‖ = d(x0, U) = ‖x0 − u0‖ = r0, that is, u ∈ B(x0, r0). It follows, by
hypothesis, that ϕ(u,−u0) ≥ 0, and therefore (by (4.3)), 0 ≤ ϕ(u,−u0)1 ≤
u− u0. This implies that u0 ≤ u for all u ∈ PU(x0). Hence, u0 = min PU(x0),
which completes the proof.
Proposition 7.3. Let U ⊂ X be a closed set and let x0 ∈ X be an element
such that x0 − U ⊂ Z. Assume that U∗ is a closed set. Consider the following
assertions:
(1) (U∗, x0) is a Chebyshev pair.
(2) (U, x0) is a Chebyshev pair.
Then (1) =⇒ (2). If each boundary point of U∗ is Chebyshev, then (2) =⇒ (1).

Proof: (1) =⇒ (2). Suppose (1) holds and if possible that (U, x0) is not a
Chebyshev pair. Then there exist u1 and u2 ∈ PU(x0) with u1 6= u2. Since,
by hypothesis, x0 − U ⊂ Z, it follows from Proposition 7.1 that d(x0, U) =
d(x0, U∗). Hence u1, u2 ∈ PU∗(x0) because U ⊂ U∗. This is a contradiction.

(2) =⇒ (1). Suppose (2) holds and that each boundary point of U∗ is Cheby-
shev. Assume on the contrary that the pair (U∗, x0) is not Chebyshev. Then
there exist u∗ and v∗ ∈ PU∗(x0) with u∗ 6= v∗. Due to Proposition 6.1 there
exist u and v ∈ U such that u∗ ≤ u and v∗ ≤ v. Therefore, since d(x0, U) =
d(x0, U∗), we have

d(x0, U) = ‖x0 − u∗‖ ≥ p(x0 − u∗) ≥ p(x0 − u) = ‖x0 − u‖ ≥ d(x0, U),

and

d(x0, U) = ‖x0 − v∗‖ ≥ p(x0 − v∗) ≥ p(x0 − v) = ‖x0 − v‖ ≥ d(x0, U).

Hence u, v ∈ PU(x0) ⊂ PU∗(x0).

Since U∗ is a closed downward set and each its boundary point is Chebyshev,
it follows from Theorem 5.2 and Proposition 5.1 that u 6= v, and so the pair
(U, x0) is not Chebyshev. This is a contradiction, which completes the proof.
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