37 research outputs found

    Intelligent Identification of Childhood Musical Murmurs

    Full text link
    Heart murmurs are often the first signs of heart valvular disorders. However, most heart murmurs detected in children are innocent musical murmurs (also called Still's murmurs), which should be distinguished from other murmur types that are mostly pathological, such as regurgitant, obstructive, and flow murmurs. In order to reduce both unnecessary healthcare expenditures and parental anxiety, this study aims to develop algorithms for intelligently identifying musical murmurs in children. Discrete wavelet transform was applied to phonocardiographic signals to extract features. Singular value decomposition was applied on the matrix derived from continuous wavelet transform to extract extra features. The sequential forward feature selection algorithm was then utilized to select significant features. Musical murmurs were subsequently differentiated via a classification procedure consisting of three classification techniques: discriminant analysis, support vector machine, and artificial neural network. The results of 89.02% sensitivity, 84.76% specificity and 87.36% classification accuracy were achieved

    Defining an ageing-related pathology, disease or syndrome: International Consensus Statement

    Get PDF
    Around the world, individuals are living longer, but an increased average lifespan does not always equate to an increased health span. With advancing age, the increased prevalence of ageing-related diseases can have a significant impact on health status, functional capacity and quality of life. It is therefore vital to develop comprehensive classification and staging systems for ageing-related pathologies, diseases and syndromes. This will allow societies to better identify, quantify, understand and meet the healthcare, workforce, well-being and socioeconomic needs of ageing populations, whilst supporting the development and utilisation of interventions to prevent or to slow, halt or reverse the progression of ageing-related pathologies. The foundation for developing such classification and staging systems is to define the scope of what constitutes an ageing-related pathology, disease or syndrome. To this end, a consensus meeting was hosted by the International Consortium to Classify Ageing-Related Pathologies (ICCARP), on February 19, 2024, in Cardiff, UK, and was attended by 150 recognised experts. Discussions and voting were centred on provisional criteria that had been distributed prior to the meeting. The participants debated and voted on these. Each criterion required a consensus agreement of ≥ 70% for approval. The accepted criteria for an ageing-related pathology, disease or syndrome were (1) develops and/or progresses with increasing chronological age; (2) should be associated with, or contribute to, functional decline or an increased susceptibility to functional decline and (3) evidenced by studies in humans. Criteria for an ageing-related pathology, disease or syndrome have been agreed by an international consortium of subject experts. These criteria will now be used by the ICCARP for the classification and ultimately staging of ageing-related pathologies, diseases and syndromes

    A software method for suppressing statistical fluctuations in preset count digital-rate meter algorithms

    No full text
    A method for suppression of statistical fluctuations of the mean count rate measurements based on limiting the time difference between two adjacent input pulses to a pre-assigned range, has been incorporated in the preset count digital-rate meter algorithm. The algorithm allows measurement of mean count rates with considerably lower levels of statistical fluctuations of the measurement results and significantly lower values of the preset count compared to the traditional algorithm. The exact relation between the lower and upper limits of the difference between two adjacent pulses has been derived. The lower limit of the preset count applicable to the algorithm has been identified. The response time of the algorithm to a sudden change of count rate has been determined

    A generalization of the preset count moving average algorithm for digital rate meters

    No full text
    A generalized definition of the preset count moving average algorithm for digital rate meters has been introduced. The algorithm is based on the knowledge of time intervals between successive pulses in random-pulse sequences. The steady state and transient regimes of the algorithm have been characterized. A measure for statistical fluctuations of the successive measurement results has been introduced. The versatility of the generalized algorithm makes it suitable for application in the design of the software of modem measuring/control digital systems. (C) 2002 Elsevier Science B.V. All rights reserved

    Natural Monocrystalline Pyrite as Sensor for Potentiometric Redox Titrations. Part I. Titrations with Permanganate

    No full text
    Results obtained in potentiometric titrations of Fe(II), Mn(II), Fe(CN)64-, C2O42- and As(III) with standard potassium permanganate solution, are presented. The titration end point (TEP) was detected with a universal electrode whose sensor is natural crystalline pyrite. The titrations of As(III) were carried out in HCl (1.2 M) and H2SO4 solutions (0.1- 4.5 M), whereas oxalate was determined in H2SO4 (0.1-4.5 M). Iron(II) and hexacyanoferrate(II) were titrated in H2SO4 and also in H3PO4 solutions (0.1-4.5 M). The titrations of Mn(II) were performed in H2P2O72- media at pH 4.0, 5.0, 6.0 and 7.0. The results obtained by using the pyrite electrode were compared with those obtained by the application of a Pt-electrode, and good agreement, reproducibility and accuracy were obtained. The potentials in the course of the titration and at the end-point (TEP) are rapidly established. The potential changes at the TEP ranged from 90 to 330 mV/0.1 mL, depending on the titrated system. The highest changes were observed in titrations of Fe(II) in H3PO4 (240-330 mV/0.1 mL). Reversed titrations were also performed and accurate and reproducible results were obtained

    Natural Monocrystalline Pyrite as Sensor for Potentiometric

    No full text
    and As(III) with standard potassium permanganate solution, are presented. The titration end point (TEP) was detected with a universal electrode whose sensor is natural crystalline pyrite. The titrations of As(III) were carried out in HCl (1.2 M) and H2SO4 solutions (0.1-4.5 M), whereas oxalate was determined in H2SO4 (0.1-4.5 M). Iron(II) and hexacyanoferrate(II) were titrated in H2SO4 and also in H3PO4 solutions (0.1-4.5 M). The titrations of Mn(II) were performed in H2P2O7 2- media at pH 4.0, 5.0, 6.0 and 7.0. The results obtained by using the pyrite electrode were compared with those obtained by the application of a Pt-electrode, and good agreement, reproducibility and accuracy were obtained. The potentials in the course of the titration and at the end-point (TEP) are rapidly established. The potential changes at the TEP ranged from 90 to 330 mV/0.1 mL, depending on the titrated system. The highest changes were observed in titrations of Fe(II) in H3PO4 (240-330 mV/0.1 mL). Reversed titrations were also performed and accurate and reproducible results were obtained
    corecore