12 research outputs found
Recommended from our members
Functional organization of the circadian timing system
The circadian timing system establishes daily rhythms in behavior and physiology throughout the body, ensuring that functions like activity, sleep and hormone release are appropriately timed. Research suggests that his temporal synchrony within the body is quite important for health and survival. In mammals, the central circadian pacemaker in the suprachiasmatic nucleus (SCN) drives rhythms in behavior and physiology in large part by stimulating or inhibiting other brain regions responsible for these functions at the appropriate times of day. This timed signal is often indirect, i.e. relayed or possibly processed through a series of neurons in different brain regions before reaching the effector site. The subparaventricular zone (SPZ), a region adjacent to the SCN which is the main recipient of direct neuronal inputs from the SCN, is thought to be a critical relay for SCN signals, since loss of the SPZ results in loss of circadian rhythms in body temperature, activity and sleep/wakefulness. Another important relay site, the dorsomedial hypothalamic nucleus (DMH) gets direct input from both the SCN and SPZ and is critical for normal expression of various circadian rhythms
Supramammillary glutamate neurons are a key node of the arousal system
Basic and clinical observations suggest that the caudal hypothalamus comprises a key node of the ascending arousal system, but the cell types underlying this are not fully understood. Here we report that glutamate-releasing neurons of the supramammillary region (SuMvglut2) produce sustained behavioral and EEG arousal when chemogenetically activated. This effect is nearly abolished following selective genetic disruption of glutamate release from SuMvglut2 neurons. Inhibition of SuMvglut2 neurons decreases and fragments wake, also suppressing theta and gamma frequency EEG activity. SuMvglut2 neurons include a subpopulation containing both glutamate and GABA (SuMvgat/vglut2) and another also expressing nitric oxide synthase (SuMNos1/Vglut2). Activation of SuMvgat/vglut2 neurons produces minimal wake and optogenetic stimulation of SuMvgat/vglut2 terminals elicits monosynaptic release of both glutamate and GABA onto dentate granule cells. Activation of SuMNos1/Vglut2 neurons potently drives wakefulness, whereas inhibition reduces REM sleep theta activity. These results identify SuMvglut2 neurons as a key node of the wakeâsleep regulatory system
Impact of Circadian Disruption on Cardiovascular Function and Disease
The circadian system, that is ubiquitous across species, generates âŒ24 h rhythms in virtually all biological processes, and allows them to anticipate and adapt to the 24 h day/night cycle, thus ensuring optimal physiological function. Epidemiological studies show time-of-day variations in adverse cardiovascular (CV) events, and controlled laboratory studies demonstrate a circadian influence on key markers of CV function and risk. Furthermore, circadian misalignment, that is typically experienced by shift workers as well as by individuals who experience late eating, (social) jet lag, or circadian rhythm sleep-wake disturbances, increases CV risk factors. Therefore, understanding the mechanisms by which the circadian system regulates CV function, and which of these are affected by circadian disruption, may help to develop intervention strategies to mitigate CV risk
Daytime eating prevents mood vulnerability in night work
Shift workers have a 25 to 40% higher risk of depression and anxiety partly due to a misalignment between the central circadian clock and daily environmental/behavioral cycles that may negatively affect mood and emotional well-being. Hence, evidence-based circadian interventions are required to prevent mood vulnerability in shift work settings. We used a stringently controlled 14-d circadian paradigm to assess mood vulnerability during simulated night work with either daytime and nighttime or daytime-only eating as compared with simulated day work (baseline). Simulated night work with daytime and nighttime eating increased depression-like mood levels by 26.2% (p-value adjusted using False Discovery Rates, pFDR = 0.001; effect-size r = 0.78) and anxiety-like mood levels by 16.1% (pFDR = 0.001; effect-size r = 0.47) compared to baseline, whereas this did not occur with simulated night work in the daytime-only eating group. Importantly, a larger degree of internal circadian misalignment was robustly associated with more depression-like (r = 0.77; P = 0.001) and anxiety-like (r = 0.67; P = 0.002) mood levels during simulated night work. These findings offer a proof-of-concept demonstration of an evidence-based meal timing intervention that may prevent mood vulnerability in shift work settings. Future studies are required to establish if changes in meal timing can prevent mood vulnerability in night workers
Daytime eating prevents mood vulnerability in night work
Shift workers have a 25 to 40% higher risk of depression and anxiety partly due to a misalignment between the central circadian clock and daily environmental/behavioral cycles that may negatively affect mood and emotional well-being. Hence, evidencebased circadian interventions are required to prevent mood vulnerability in shift work settings. We used a stringently controlled 14-d circadian paradigm to assess mood vulnerability during simulated night work with either daytime and nighttime or daytimeonly eating as compared with simulated day work (baseline). Simulated night work with daytime and nighttime eating increased depression-like mood levels by 26.2% (p-value adjusted using False Discovery Rates, pFDR = 0.001; effect-size r = 0.78) and anxiety-like mood levels by 16.1% (pFDR = 0.001; effect-size r = 0.47) compared to baseline, whereas this did not occur with simulated night work in the daytime-only eating group. Importantly, a larger degree of internal circadian misalignment was robustly associated with more depression-like (r = 0.77; P = 0.001) and anxiety-like (r = 0.67; P = 0.002) mood levels during simulated night work. These findings offer a proof-ofconcept demonstration of an evidence-based meal timing intervention that may prevent mood vulnerability in shift work settings. Future studies are required to establish if changes in meal timing can prevent mood vulnerability in night workers
Bone Turnover Markers After Sleep Restriction and Circadian Disruption: A Mechanism for Sleep-Related Bone Loss in Humans
Context: Sleep abnormalities are associated with low bone mineral density. Underlying mechanisms are unknown. Objective: Investigate the impact of sleep restriction with circadian disruption on bone biomarkers. Design: Intervention study. Participants and Methods: Four bone biomarkers [C-terminal cross-linked telopeptide of type I collagen (CTX) = bone resorption, N-terminal propeptide of type I procollagen (P1NP) = bone formation, sclerostin and fibroblast growth factor 23 = osteocyte function] were measured in bihourly serum samples over 24 hours at baseline and after âŒ3 weeks of sleep restriction (5.6 hours sleep/24 hours) with concurrent circadian disruption (recurring 28-hour âdayâ in dim light) in 10 men (age groups: 20 to 27 years, n = 6; 55 to 65 years, n = 4). The effects of sleep/circadian disruption and age on bone biomarker levels were evaluated using maximum likelihood estimation in a mixed model for repeated measures. Results: P1NP levels were lower after intervention compared with baseline (P \u3c 0.001); the decrease in P1NP was greater for younger compared with older men (28.0% vs 18.2%, P \u3c 0.001). There was no change in CTX (Î = 0.03 ± 0.02 ng/mL, P = 0.10). Sclerostin levels were higher postintervention in the younger men only (Î = 22.9% or 5.64 ± 1.10 pmol/L, P \u3c 0.001). Conclusions: These data suggest that 3 weeks of circadian disruption with concurrent sleep restriction can lead to an uncoupling of bone turnover wherein bone formation is decreased but bone resorption is unchanged. Circadian disruption and sleep restriction may be most detrimental to bone in early adulthood
Proof-of-principle demonstration of endogenous circadian system and circadian misalignment effects on human oral microbiota
Circadian misalignment-the misalignment between the central circadian clock and behavioral and environmental cycles (including sleep/wake, fasting/eating, dark/light)-results in adverse cardiovascular and metabolic effects. Potential underlying mechanisms for these adverse effects include alterations in the orogastrointestinal microbiota. However, it remains unknown whether human oral microbiota has endogenous circadian rhythms (i.e., independent of sleep/wake, fasting/eating, and dark/light cycles) and whether circadian misalignment influences oral microbiota community composition. Healthy young individuals [27.3 +/- 2.3 years (18-35 years), 4 men and 2 women, body-mass index range: 18-28 kg/m(2)] were enrolled in a stringently controlled 14-day circadian laboratory protocol. This included a 32-h constant routine (CR) protocol (endogenous circadian baseline assessment), a forced desynchrony protocol with four 28-h days under similar to 3 lx to induce circadian misalignment, and a post-misalignment 40-h CR protocol. Microbiota assessments were performed on saliva samples collected every 4 h throughout both CR protocols. Total DNA was extracted and processed using high-throughput 16S ribosomal RNA gene amplicon sequencing. The relative abundance of specific oral microbiota populations, i.e., one of the five dominant phyla, and three of the fourteen dominant genera, exhibited significant endogenous circadian rhythms. Importantly, circadian misalignment dramatically altered the oral microbiota landscape, such that four of the five dominant phyla and eight of the fourteen dominant genera exhibited significant circadian misalignment effects. Moreover, circadian misalignment significantly affected the metagenome functional content of oral microbiota (inferred gene content analysis), as indicated by changes in specific functional pathways associated with metabolic control and immunity. Collectively, our proof-of-concept study provides evidence for endogenous circadian rhythms in human oral microbiota and show that even relatively short-term experimental circadian misalignment can dramatically affect microbiota community composition and functional pathways involved in metabolism and immune function. These proof-of-principle findings have translational relevance to individuals typically exposed to circadian misalignment, including night shift workers and frequent flyers
Proofâofâprinciple demonstration of endogenous circadian system and circadian misalignment effects on human oral microbiota
Circadian misalignmentâthe misalignment between the central circadian âclockâ and behavioral and environmental cycles (including sleep/wake, fasting/eating, dark/light)âresults in adverse cardiovascular and metabolic effects. Potential underlying mechanisms for these adverse effects include alterations in the orogastrointestinal microbiota. However, it remains unknown whether human oral microbiota has endogenous circadian rhythms (i.e., independent of sleep/wake, fasting/eating, and dark/light cycles) and whether circadian misalignment influences oral microbiota community composition. Healthy young individuals [27.3 ± 2.3 years (18â35 years), 4 men and 2 women, body-mass index range: 18â28 kg/m2] were enrolled in a stringently controlled 14-day circadian laboratory protocol. This included a 32-h constant routine (CR) protocol (endogenous circadian baseline assessment), a forced desynchrony protocol with four 28-h âdaysâ under ~3 lx to induce circadian misalignment, and a post-misalignment 40-h CR protocol. Microbiota assessments were performed on saliva samples collected every 4 h throughout both CR protocols. Total DNA was extracted and processed using high-throughput 16S ribosomal RNA gene amplicon sequencing. The relative abundance of specific oral microbiota populations, i.e., one of the five dominant phyla, and three of the fourteen dominant genera, exhibited significant endogenous circadian rhythms. Importantly, circadian misalignment dramatically altered the oral microbiota landscape, such that four of the five dominant phyla and eight of the fourteen dominant genera exhibited significant circadian misalignment effects. Moreover, circadian misalignment significantly affected the metagenome functional content of oral microbiota (inferred gene content analysis), as indicated by changes in specific functional pathways associated with metabolic control and immunity. Collectively, our proof-of-concept study provides evidence for endogenous circadian rhythms in human oral microbiota and show that even relatively short-term experimental circadian misalignment can dramatically affect microbiota community composition and functional pathways involved in metabolism and immune function. These proof-of-principle findings have translational relevance to individuals typically exposed to circadian misalignment, including night shift workers and frequent flyers
Daytime eating prevents internal circadian misalignment and glucose intolerance in night work
Night work increases diabetes risk. Misalignment between the central circadian âclockâ and daily behaviors, typical in night workers, impairs glucose tolerance, likely due to internal misalignment between central and peripheral circadian rhythms. Whether appropriate circadian alignment of eating can prevent internal circadian misalignment and glucose intolerance is unknown. In a 14-day circadian paradigm, we assessed glycemic control during simulated night work with either nighttime or daytime eating. Assessment of central (body temperature) and peripheral (glucose and insulin) endogenous circadian rhythms happened during constant routine protocols before and after simulated night work. Nighttime eating led to misalignment between central and peripheral (glucose) endogenous circadian rhythms and impaired glucose tolerance, whereas restricting meals to daytime prevented it. These findings offer a behavioral approach to preventing glucose intolerance in shift workers