152 research outputs found

    Is it possible to formulate least action principle for dissipative systems?

    Full text link
    A longstanding open question in classical mechanics is to formulate the least action principle for dissipative systems. In this work, we give a general formulation of this principle by considering a whole conservative system including the damped moving body and its environment receiving the dissipated energy. This composite system has the conservative Hamiltonian H=K1+V1+H2H=K_1+V_1+H_2 where K1K_1 is the kinetic energy of the moving body, V1V_1 its potential energy and H2H_2 the energy of the environment. The Lagrangian can be derived by using the usual Legendre transformation L=2K1+2K2−HL=2K_1+2K_2-H where K2K_2 is the total kinetic energy of the environment. An equivalent expression of this Lagrangian is L=K1−V1−EdL=K_1-V_1-E_d where EdE_d is the energy dissipated by the friction from the moving body into the environment from the beginning of the motion. The usual variation calculus of least action leads to the correct equation of the damped motion. We also show that this general formulation is a natural consequence of the virtual work principle.Comment: 11 pages, no figur

    Progress in Classical and Quantum Variational Principles

    Full text link
    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics, in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis Principle is the classical limit of Schr\"{o}dinger's variational principle of wave mechanics, and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems
    • …
    corecore