1,090 research outputs found

    Sentiment analysis of health care tweets: review of the methods used.

    Get PDF
    BACKGROUND: Twitter is a microblogging service where users can send and read short 140-character messages called "tweets." There are several unstructured, free-text tweets relating to health care being shared on Twitter, which is becoming a popular area for health care research. Sentiment is a metric commonly used to investigate the positive or negative opinion within these messages. Exploring the methods used for sentiment analysis in Twitter health care research may allow us to better understand the options available for future research in this growing field. OBJECTIVE: The first objective of this study was to understand which tools would be available for sentiment analysis of Twitter health care research, by reviewing existing studies in this area and the methods they used. The second objective was to determine which method would work best in the health care settings, by analyzing how the methods were used to answer specific health care questions, their production, and how their accuracy was analyzed. METHODS: A review of the literature was conducted pertaining to Twitter and health care research, which used a quantitative method of sentiment analysis for the free-text messages (tweets). The study compared the types of tools used in each case and examined methods for tool production, tool training, and analysis of accuracy. RESULTS: A total of 12 papers studying the quantitative measurement of sentiment in the health care setting were found. More than half of these studies produced tools specifically for their research, 4 used open source tools available freely, and 2 used commercially available software. Moreover, 4 out of the 12 tools were trained using a smaller sample of the study's final data. The sentiment method was trained against, on an average, 0.45% (2816/627,024) of the total sample data. One of the 12 papers commented on the analysis of accuracy of the tool used. CONCLUSIONS: Multiple methods are used for sentiment analysis of tweets in the health care setting. These range from self-produced basic categorizations to more complex and expensive commercial software. The open source and commercial methods are developed on product reviews and generic social media messages. None of these methods have been extensively tested against a corpus of health care messages to check their accuracy. This study suggests that there is a need for an accurate and tested tool for sentiment analysis of tweets trained using a health care setting-specific corpus of manually annotated tweets first

    A p-multigrid method enhanced with an ILUT smoother and its comparison to h-multigrid methods within Isogeometric Analysis

    Full text link
    Over the years, Isogeometric Analysis has shown to be a successful alternative to the Finite Element Method (FEM). However, solving the resulting linear systems of equations efficiently remains a challenging task. In this paper, we consider a p-multigrid method, in which coarsening is applied in the approximation order p instead of the mesh width h. Since the use of classical smoothers (e.g. Gauss-Seidel) results in a p-multigrid method with deteriorating performance for higher values of p, the use of an ILUT smoother is investigated. Numerical results and a spectral analysis indicate that the resulting p-multigrid method exhibits convergence rates independent of h and p. In particular, we compare both coarsening strategies (e.g. coarsening in h or p) adopting both smoothers for a variety of two and threedimensional benchmarks

    Community detection and role identification in directed networks: understanding the Twitter network of the care.data debate

    Get PDF
    With the rise of social media as an important channel for the debate and discussion of public affairs, online social networks such as Twitter have become important platforms for public information and engagement by policy makers. To communicate effectively through Twitter, policy makers need to understand how influence and interest propagate within its network of users. In this chapter we use graph-theoretic methods to analyse the Twitter debate surrounding NHS Englands controversial care.data scheme. Directionality is a crucial feature of the Twitter social graph - information flows from the followed to the followers - but is often ignored in social network analyses; our methods are based on the behaviour of dynamic processes on the network and can be applied naturally to directed networks. We uncover robust communities of users and show that these communities reflect how information flows through the Twitter network. We are also able to classify users by their differing roles in directing the flow of information through the network. Our methods and results will be useful to policy makers who would like to use Twitter effectively as a communication medium

    Improving Information Support Of enterprise management, for example, municipal agencies Ternopil Regional Council "Base of special medical supplies"

    Get PDF
    Обґрунтовано проектні рішення щодо ефективності створення веб-сайту підприємства, доцільності формування інформаційно-аналітичного відділу та раціональності проекту впровадження автоматизованої системи управління інформаційною діяльністю підприємства.Grounded design decisions on the effectiveness of creating a web-site, the feasibility of forming information-analytical department of rationality and project implementation of the automated information management system of the enterprise
    corecore