41 research outputs found

    Heterogeneity in Asthma : Implications for Dendritic Cell Activation?

    Get PDF

    Child participation in triadic medical consultations:A scoping review and summary of promotive interventions

    Get PDF
    OBJECTIVES: To promote patient centered care, children with health issues should be supported to participate in consultations with health care professionals. We aimed to summarize, in a scoping review, the evidence on child participation in triadic encounters and its promotive interventions.METHODS: Two researchers systematically searched four major databases, and included studies on child participation in medical consultations. A synthesis of quantitative and qualitative data was made.RESULTS: Of 1678 retrieved records, 39 papers were included: 22 quantitative, 14 qualitative and 3 mixed-methods studies. Child participation, measured by utterances, turns or speech time, ranged between 4% and 14%. Participation increased with age. Equidistant seating arrangements, child-directed gaze and finding the appropriate tone of voice by the physician promoted child participation. Despite all facilitative efforts of doctors and parents, such as social talk, eHealth tools or consultation education, no increase in child participation was observed over the last 50 years.CONCLUSIONS: Children continue to participate only marginally in medical consultations, despite their desire to be involved in various aspects of the clinical encounter and their right to have their voice heard.PRACTICE IMPLICATIONS: Health care professionals should provide more opportunities for children to participate in triadic medical encounters and create an inclusive environment.</p

    Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets?

    Get PDF
    Dendritic cell (DC) based cancer immunotherapy aims at the activation of the immune system, and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate the tumor. DCs represent a heterogeneous cell population, including conventional DCs (cDCs), consisting of cDC1s, cDC2s, plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs). These DC subsets differ both in ontogeny and functional properties, such as the capacity to induce CD4+ and CD8+ T-cell activation. MoDCs are most frequently used for vaccination purposes, based on technical aspects such as availability and in vitro expansion. However, whether moDCs are superior over other DC subsets in inducing anti-tumor immune responses, is unknown, and likely depends on tumor type and composition of the tumor microenvironment. In this review, we discuss cellular aspects essential for DC vaccination efficacy, and the most recent findings on different DC subsets that could be used for DC-based cancer immunotherapy. This can prove valuable for the future design of more effective DC vaccines by choosing different DC subsets, and sheds light on the working mechanism of DC immunotherapy

    Combination Strategies to Optimize Efficacy of Dendritic Cell-Based Immunotherapy

    Get PDF
    Dendritic cells (DCs) are antigen-presenting cells (APCs) that are essential for the activation of immune responses. In various malignancies, these immunostimulatory properties are exploited by DC-therapy, aiming at the induction of effective anti-tumor immunity by vaccination with ex vivo antigen-loaded DCs. Depending on the type of DC-therapy used, long-term clinical efficacy upon DC-therapy remains restricted to a proportion of patients, likely due to lack of immunogenicity of tumor cells, presence of a stromal compartment, and the suppressive tumor microenvironment (TME), thereby leading to the development of resistance. In order to circumvent tumor-induced suppressive mechanisms and unleash the full potential of DC-therapy, considerable efforts have been made to combine DC-therapy with chemotherapy, radiotherapy or with checkpoint inhibitors. These combination strategies could enhance tumor immunogenicity, stimulate endogenous DCs following immunogenic cell death, improve infiltration of cytotoxic T lymphocytes (CTLs) or specifically deplete immunosuppressive cells in the TME, such as regulatory T-cells and myeloid-derived suppressor cells. In this review, different strategies of combining DC-therapy with immunomodulatory treatments will be discussed. These strategies and insights will improve and guide DC-based combination immunotherapies with the aim of further improving patient prognosis and care

    Combination Strategies to Optimize Efficacy of Dendritic Cell-Based Immunotherapy

    Get PDF
    Dendritic cells (DCs) are antigen-presenting cells (APCs) that are essential for the activation of immune responses. In various malignancies, these immunostimulatory properties are exploited by DC-therapy, aiming at the induction of effective anti-tumor immunity by vaccination with ex vivo antigen-loaded DCs. Depending on the type of DC-therapy used, long-term clinical efficacy upon DC-therapy remains restricted to a proportion of patients, likely due to lack of immunogenicity of tumor cells, presence of a stromal compartment, and the suppressive tumor microenvironment (TME), thereby leading to the development of resistance. In order to circumvent tumor-induced suppressive mechanisms and unleash the full potential of DC-therapy, considerable efforts have been made to combine DC-therapy with chemotherapy, radiotherapy or with checkpoint inhibitors. These combination strategies could enhance tumor immunogenicity, stimulate endogenous DCs following immunogenic cell death, improve infiltration of cytotoxic T lymphocytes (CTLs) or specifically deplete immunosuppressive cells in the TME, such as regulatory T-cells and myeloid-derived suppressor cells. In this review, different strategies of combining DC-therapy with immunomodulatory treatments will be discussed. These strategies and insights will improve and guide DC-based combination immunotherapies with the aim of further improving patient prognosis and care

    Heterogeneity in immune cell content in malignant pleural mesothelioma

    Get PDF
    Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with limited therapy options and dismal prognosis. In recent years, the role of immune cells within the tumor microenvironment (TME) has become a major area of interest. In this review, we discuss the current knowledge of heterogeneity in immune cell content and checkpoint expression in MPM in relation to prognosis and prediction of treatment efficacy. Generally, immune-suppressive cells such as M2 macrophages, myeloid-derived suppressor cells and regulatory T cells are present within the TME, with extensive heterogeneity in cell numbers. Infiltration of effector cells such as cytotoxic T cells, natural killer cells and T helper cells is commonly found, also with substantial patient to patient heterogeneity. PD-L1 expression also varied greatly (16-65%). The infiltration of immune cells in tumor and associated stroma holds key prognostic and predictive implications. As such, there is a strong rationale for thoroughly mapping the TME to better target therapy in mesothelioma. Researchers should be aware of the extensive possibilities that exist for a tumor to evade the cytotoxic killing from the immune system. Therefore, no “one size fits all” treatment is likely to be found and focus should lie on the heterogeneity of the tumors and TME

    CCR6+ Th cell populations distinguish ACPA positive from ACPA negative rheumatoid arthritis

    Get PDF
    Introduction: Patients with rheumatoid arthritis (RA) can be separated into two major subpopulations based on the absence or presence of serum anti-citrullinated protein antibodies (ACPAs). The more severe disease course in ACPA+ RA and differences in treatment outcome between these subpopulations suggest that ACPA+ and ACPA- RA are different disease subsets. The identification of T-helper (Th) cells specifically recognizing citrullinated peptides, combined with the strong association between HLA-DRB1 and ACPA positivity, point toward a pathogenic role of Th cells in ACPA+ RA. In this context we recently identified a potential pathogenic role for CCR6+ Th cells in RA. Therefore, we examined whether Th cell population distributions differ by ACPA status. Methods: We performed a nested matched case-control study including 27 ACPA+ and 27 ACPA- treatment-naive early RA patients matched for disease activity score in 44 joints, presence of rheumatoid factor, sex, age, duration of complaints and presence of erosions. CD4+CD45RO+ (memory) Th cell distribution profiles from these patients were generated based on differential chemokine receptor expression and related with disease duration. Results: ACPA status was not related to differences in total CD4+ T cell or memory Th cell proportions. However, ACPA+ patients had significantly higher proportions of Th cells expressing the chemokine receptors CCR6 and CXCR3. Similar proportions of CCR4+ and CCR10+ Th cells were found. Within the CCR6+ cell population, four Th subpopulations were distinguished based on differential chemokine receptor expression: Th17 (CCR4+CCR10-), Th17.1 (CXCR3+), Th22 (CCR4+CCR10+) and CCR4/CXCR3 double-positive (DP) cells. In particular, higher proportions of Th22 (p = 0.02), Th17.1 (p = 0.03) and CCR4/CXCR3 DP (p = 0.01) cells were present in ACPA+ patients. In contrast, ACPA status was not associated with differences in Th1 (CCR6-CXCR3+; p = 0.90), Th2 (CCR6-CCR4+; p = 0.27) and T-regulatory (CD25hiFOXP3+; p = 0.06) cell proportions. Interestingly, CCR6+ Th cells were inversely correlated with disease duration in ACPA- patients (R2 = -0.35; p < 0.01) but not in ACPA+ (R2 < 0.01; p = 0.94) patients. Conclusions: These findings demonstrate that increased peripheral blood CCR6+ Th cells proportions distinguish ACPA+ RA from ACPA- RA. This suggests that CCR6+ Th cells are involved in the differences in disease severity and tr

    Tnfaip3 expression in pulmonary conventional type 1 Langerin‐expressing dendritic cells regulates T helper 2‐mediated airway inflammation in mice

    Get PDF
    BACKGROUND: Conventional type 1 dendritic cells (cDC1s) control antiviral and antitumor immunity by inducing antigen-specific cytotoxic CD8+ T-cell responses. Controversy exists whether cDC1s also control CD4+ T helper 2 (Th2) cell responses, since suppressive and activating roles have been reported. DC activation status, controlled by the transcription factor NF-κB, might determine the precise outcome of Th-cell differentiation upon encounter with cDC1s. To investigate the role of activated cDC1s in Th2-driven immune responses, pulmonary cDC1s were activated by targeted deletion of A20/Tnfaip3, a negative regulator of NF-κB signaling METHODS: To target pulmonary cDC1s, Cd207 (Langerin)-mediated excision of A20/Tnfaip3 was used, generating Tnfaip3fl/fl xCd207+/cre (Tnfaip3Lg-KO ) mice. Mice were exposed to house dust mite (HDM) to provoke Th2-mediated immune responses. RESULTS: Mice harboring Tnfaip3-deficient cDC1s did not develop Th2-driven eosinophilic airway inflammation upon HDM exposure, but rather showed elevated numbers of IFNγ-expressing CD8+ T-cells. In addition, Tnfaip3Lg-KO mice harbored increased numbers of IL-12-expressing cDC1s and elevated PD-L1 expression in all pulmonary DC subsets. Blocking either IL-12 or IFNγ in Tnfaip3Lg-KO mice restored Th2-responses, whereas administration of recombinant IFNγ during HDM sensitization in C57Bl/6 mice blocked Th2-development. CONCLUSIONS: These findings indicate that the activation status of cDC1s, shown by their specific expression of co-inhibitory molecules and cytokines, critically contributes to the development of Th2-cell-mediated disorders, most likely by influencing IFNγ production in CD8+ T-cells

    Group 2 innate lymphoid cells exhibit a dynamic phenotype in allergic airway inflammation

    Get PDF
    Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33-and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought, whereby their surface marker and gene expression profile are highly dynamic
    corecore