53 research outputs found

    Revisiting Thymic Positive Selection and the Mature T Cell Repertoire for Antigen

    Get PDF
    To support effective host defense, the T cell repertoire must balance breadth of recognition with sensitivity for antigen. The concept that T lymphocytes are positively selected in the thymus is well established, but how this selection achieves such a repertoire has not been resolved. Here we suggest that it is direct linkage between self and foreign antigen recognition that produces the necessary blend of TCR diversity and specificity in the mature peripheral repertoire, enabling responses to a broad universe of unpredictable antigens while maintaining an adequate number of highly sensitive T cells in a population of limited size. Our analysis also helps to explain how diversity and frequency of antigen-reactive cells in a T cell repertoire are adjusted in animals of vastly different size scale to enable effective antipathogen responses and suggests a possible binary architecture in the TCR repertoire that is divided between germline-related optimal binding and diverse recognition

    Plasticity of Lgr5-Negative Cancer Cells Drives Metastasis in Colorectal Cancer

    Get PDF
    Colorectal cancer stem cells (CSCs) express Lgr5 and display extensive stem cell-like multipotency and self-renewal and are thought to seed metastatic disease. Here, we used a mouse model of colorectal cancer (CRC) and human tumor xenografts to investigate the cell of origin of metastases. We found that most disseminated CRC cells in circulation were Lgr5- and formed distant metastases in which Lgr5+ CSCs appeared. This p

    Neutrophil functional heterogeneity : Identification of competitive phagocytosis

    No full text
    Introduction: Phagocytosis by neutrophils is a key process in the innate immune response against invading microorganisms. Despite reported heterogeneity in other neutrophils functions, little is known regarding differences in phagocytosis by individual cells. Therefore, we tested the hypothesis that heterogeneity is present in the neutrophil compartment in its potency to phagocytize bacteria. Methods: Phagocytosis assays were performed in suspension with isolated neutrophils and Staphylococcus aureus expressing different fluorescent proteins at MOIs between 1 and 10. Repetitive addition of bacteria with different fluorescent proteins and MOIs was used to compare the phagocytic capacity of S. aureus-green fluorescent protein (GFP)-positive and negative neutrophils and exclude randomness. Results: The percentage and mean fluorescence intensity (MFI) of S. aureus-GFP-positive neutrophils increased with higher MOIs. The increase in MFI was due to phagocytosis of multiple bacteria per neutrophil as was confirmed by confocal imaging. Sequential phagocytosis of GFP- and mCherry-expressing S. aureus showed a non-random process, as S. aureus-GFP-positive neutrophils preferentially phagocytized S. aureus-mCherry. Conclusion: All neutrophils were able to phagocytize S. aureus, but some were much more potent than others. Therefore, at physiologically relevant MOIs these potent phagocytizing neutrophils will outcompete the uptake of bacteria by less competent cells in a process we propose to name "competitive phagocytosis.

    Immature Neutrophils Released in Acute Inflammation Exhibit Efficient Migration despite Incomplete Segmentation of the Nucleus

    No full text
    Acute inflammation recruits neutrophils with a band-shaped nucleus to the circulation. This neutrophil population was recently shown to have superior antibacterial capacity. Early recruitment of banded neutrophils to an infection site will likely improve the outcome of the immune response, yet it critically depends on efficient migration. However, the current dogma states that the segmentation of the mature neutrophil nucleus has evolved to favor migration through narrow pores as found between endothelial cells and in the interstitium. Therefore, we hypothesized that banded neutrophils migrate less efficiently than neutrophils with segmented nuclei, whereas recently described neutrophils with hypersegmented nuclei would in turn migrate more efficiently. Acute inflammation was evoked in a human model of experimental endotoxemia to recruit neutrophil subsets with different nuclear segmentation to the circulation. To simulate migration toward an infection site, migration of the subsets was studied in in vitro models of transendothelial migration or interstitial chemokinesis and chemotaxis. In both models, nuclear segmentation did not increase migration speed. In dense collagen matrices, the speed of the hypersegmented neutrophils was even reduced compared with the banded neutrophils. Fluorescence microscopy suggested that the hypersegmented neutrophils displayed reduced rear release and deposited more membrane vesicles. Vice versa, migration through narrow pores did not induce nuclear segmentation in the neutrophils. In conclusion, like neutrophils with a segmented nucleus, the banded subset exhibited efficient migration through narrow pores. These findings suggest that the nucleus does not preclude the banded subset from reaching an infection site

    Automated flow cytometry enables high performance point-of-care analysis of leukocyte phenotypes

    No full text
    Introduction: Phagocytes such as granulocytes and monocytes are fundamental players in the innate immune system. Activation of these cells can be quantified by the measurement of activation marker expression using flow cytometry. Analysis of receptor expression on inflammatory cells facilitates the diagnosis of inflammatory diseases and can be used to determine the extent of inflammation. However, several major limitations of this analysis precludes application of inflammation monitoring in clinical practice. Fast and automated analysis would minimalize ex vivo manipulation and allow reproducible processing. The aim of this study was to evaluate a fully automated “load & go” flow cytometer for analyzing activation of granulocytes and monocytes in a clinically applicable setting. Methods: Blood samples were obtained from 10 anonymous and healthy volunteers between the age of 18 and 65 years. Granulocyte and monocyte activation was determined by the use of the markers CD35, CD11b and CD10 measured in the automated AQUIOS CL® “load & go” flow cytometer. This machine is able to pierce the tube caps, add antibodies, lyse and measure the sample within 20 min after vena puncture. Reproducibility tests were performed to test the stability of activation marker expression on phagocytes. The expression of activation markers was measured at different time points after blood drawing to analyze the effect of bench time on granulocyte and monocyte activation. Results: The duplicate experiments demonstrate a high reproducibility of the measurements of the activation state of phagocytes. Healthy controls showed a very homogenous expression of activation markers at T = 0 (immediately after vena puncture). Activation markers on neutrophils were already significantly increased after 1 h (T = 1) depicted as means (95%Cl) CD35: 2.2× (1.5×-2.5×) p =.028, CD11b: 2.5× (1.7×-3.1×) p =.023, CD10: 2.5× (2.1×-2.7×) p =.009) and a further increase in activation markers was observed after 2 and 3 h. Monocytes also showed a increase in activation markers in 1 h (mean (95%Cl) CD35: 1.8× (1.3×–2.2×) p =.058, CD11b: 2.13× (1.6×–2.4×) p =.025) and also a further significant increase in 2 and 3 h was observed. Conclusion: This study showed that bench time of one hour already leads to a significant upregulation and bigger variance in activation markers of granulocytes and monocytes. In addition, it is likely that automated flow cytometry reduces intra-assay variability in the analysis of activation markers on inflammatory cells. Therefore, we found that it is of utmost importance to perform immune activation analysis as fast as possible to prevent drawing wrong conclusions. Automated flow cytometry is able to reduce this analysis from 2 h to only 15–20 min without the need of dedicated personnel and in a point-of-care context. This now allows fast and automated inflammation monitoring in blood samples obtained from a variety of patient groups. Fund: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

    Low Immune Activation despite High Levels of Pathogenic Human Immunodeficiency Virus Type 1 Results in Long-Term Asymptomatic Diseaseâ–ż

    No full text
    Long-term asymptomatic human immunodeficiency virus (HIV)-infected individuals (LTA) usually have low viral load and low immune activation. To discern whether viral load or immune activation is dominant in determining progression to AIDS, we studied three exceptional LTA with high viral loads. HIV type 1 isolates from these LTA were as pathogenic as viruses from progressors in organ culture. Despite high viral loads, these LTA had low levels of proliferating and activated T cells compared to progressors, like other LTA. In contrast to those in progressors, HIV-specific CD4+ T-cell responses in these LTA were maintained. Thus, low immune activation despite a high viral load preserved HIV-specific T-cell responses and resulted in a long-term asymptomatic phenotype
    • …
    corecore