369 research outputs found

    Characteristic Function of Time-Inhomogeneous L\'evy-Driven Ornstein-Uhlenbeck Processes

    Full text link
    Distributional properties -including Laplace transforms- of integrals of Markov processes received a lot of attention in the literature. In this paper, we complete existing results in several ways. First, we provide the analytical solution to the most general form of Gaussian processes (with non-stationary increments) solving a stochastic differential equation. We further derive the characteristic function of integrals of L\'evy-processes and L\'evy driven Ornstein-Uhlenbeck processes with time-inhomogeneous coefficients based on the characteristic exponent of the corresponding stochastic integral. This yields a two-dimensional integral which can be solved explicitly in a lot of cases. This applies to integrals of compound Poisson processes, whose characteristic function can then be obtained in a much easier way than using joint conditioning on jump times. Closed form expressions are given for gamma-distributed jump sizes as an example.Comment: 15 pages, 26 pages, to appear in Statistics and Probability Letter

    A subordinated CIR intensity model with application to Wrong-Way risk CVA

    Full text link
    Credit Valuation Adjustment (CVA) pricing models need to be both flexible and tractable. The survival probability has to be known in closed form (for calibration purposes), the model should be able to fit any valid Credit Default Swap (CDS) curve, should lead to large volatilities (in line with CDS options) and finally should be able to feature significant Wrong-Way Risk (WWR) impact. The Cox-Ingersoll-Ross model (CIR) combined with independent positive jumps and deterministic shift (JCIR++) is a very good candidate : the variance (and thus covariance with exposure, i.e. WWR) can be increased with the jumps, whereas the calibration constraint is achieved via the shift. In practice however, there is a strong limit on the model parameters that can be chosen, and thus on the resulting WWR impact. This is because only non-negative shifts are allowed for consistency reasons, whereas the upwards jumps of the JCIR++ need to be compensated by a downward shift. To limit this problem, we consider the two-side jump model recently introduced by Mendoza-Arriaga \& Linetsky, built by time-changing CIR intensities. In a multivariate setup like CVA, time-changing the intensity partly kills the potential correlation with the exposure process and destroys WWR impact. Moreover, it can introduce a forward looking effect that can lead to arbitrage opportunities. In this paper, we use the time-changed CIR process in a way that the above issues are avoided. We show that the resulting process allows to introduce a large WWR effect compared to the JCIR++ model. The computation cost of the resulting Monte Carlo framework is reduced by using an adaptive control variate procedure

    Piecewise Constant Martingales and Lazy Clocks

    Full text link
    This paper discusses the possibility to find and construct \textit{piecewise constant martingales}, that is, martingales with piecewise constant sample paths evolving in a connected subset of R\mathbb{R}. After a brief review of standard possible techniques, we propose a construction based on the sampling of latent martingales Z~\tilde{Z} with \textit{lazy clocks} θ\theta. These θ\theta are time-change processes staying in arrears of the true time but that can synchronize at random times to the real clock. This specific choice makes the resulting time-changed process Zt=Z~θtZ_t=\tilde{Z}_{\theta_t} a martingale (called a \textit{lazy martingale}) without any assumptions on Z~\tilde{Z}, and in most cases, the lazy clock θ\theta is adapted to the filtration of the lazy martingale ZZ. This would not be the case if the stochastic clock θ\theta could be ahead of the real clock, as typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (intervals of) R\mathbb{R}.Comment: 17 pages, 8 figure

    Mixing and non-mixing local minima of the entropy contrast for blind source separation

    Full text link
    In this paper, both non-mixing and mixing local minima of the entropy are analyzed from the viewpoint of blind source separation (BSS); they correspond respectively to acceptable and spurious solutions of the BSS problem. The contribution of this work is twofold. First, a Taylor development is used to show that the \textit{exact} output entropy cost function has a non-mixing minimum when this output is proportional to \textit{any} of the non-Gaussian sources, and not only when the output is proportional to the lowest entropic source. Second, in order to prove that mixing entropy minima exist when the source densities are strongly multimodal, an entropy approximator is proposed. The latter has the major advantage that an error bound can be provided. Even if this approximator (and the associated bound) is used here in the BSS context, it can be applied for estimating the entropy of any random variable with multimodal density.Comment: 11 pages, 6 figures, To appear in IEEE Transactions on Information Theor

    SDEs with uniform distributions: Peacocks, Conic martingales and mean reverting uniform diffusions

    Get PDF
    It is known since Kellerer (1972) that for any peacock process there exist mar-tingales with the same marginal laws. Nevertheless, there is no general method for finding such martingales that yields diffusions. Indeed, Kellerer's proof is not constructive: finding the dynamics of processes associated to a given peacock is not trivial in general. In this paper we are interested in the uniform peacock that is, the peacock with uniform law at all times on a generic time-varying support [a(t), b(t)]. We derive explicitly the corresponding Stochastic Differential Equations (SDEs) and prove that, under certain conditions on the boundaries a(t) and b(t), they admit a unique strong solution yielding the relevant diffusion process. We discuss the relationship between our result and the previous derivation of diffusion processes associated to square-root and linear time-boundaries, emphasizing the cases where our approach adds strong uniqueness, and study the local time and activity of the solution processes. We then study the peacock with uniform law at all times on a constant support [−1, 1] and derive the SDE of an associated mean-reverting diffusion process with uniform margins that is not a martingale. For the related SDE we prove existence of a solution in [0, T ]. Finally, we provide a numerical case study showing that these processes have the desired uniform behaviour. These results may be used to model random probabilities, random recovery rates or random correlations
    • …
    corecore