research

Piecewise Constant Martingales and Lazy Clocks

Abstract

This paper discusses the possibility to find and construct \textit{piecewise constant martingales}, that is, martingales with piecewise constant sample paths evolving in a connected subset of R\mathbb{R}. After a brief review of standard possible techniques, we propose a construction based on the sampling of latent martingales Z~\tilde{Z} with \textit{lazy clocks} θ\theta. These θ\theta are time-change processes staying in arrears of the true time but that can synchronize at random times to the real clock. This specific choice makes the resulting time-changed process Zt=Z~θtZ_t=\tilde{Z}_{\theta_t} a martingale (called a \textit{lazy martingale}) without any assumptions on Z~\tilde{Z}, and in most cases, the lazy clock θ\theta is adapted to the filtration of the lazy martingale ZZ. This would not be the case if the stochastic clock θ\theta could be ahead of the real clock, as typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (intervals of) R\mathbb{R}.Comment: 17 pages, 8 figure

    Similar works