3 research outputs found

    Bilateral multiple coronary artery fistulae with angina pectoris and syncope

    Get PDF
    AbstractCoronary artery fistulae (CAF) are rare cardiac anomalies. They frequently arise from the right coronary artery (RCA) with fistulae originating from the left anterior descending artery (LAD) or from multiple arteries being less common. They do not usually cause symptoms and are incidentally diagnosed on routine cardiac imaging. We report a 70years old male patient presenting with chest pain and syncope during physical activity. Diagnostic coronary angiography revealed bilateral multiple CAF originating from both the LAD and RCA. As high blood flow output was recognized in these large vascular anomalies contributing to ‘steal phenomenon’ surgical intervention was planned. This manuscript aimed to present the case and review the current literature for the management and treatment of these coronary anomalies

    Accuracy of virtually 3D planned resection templates in mandibular reconstruction

    No full text
    Since reconstruction of composite defects in the head and neck region is a challenging and demanding problem for head and neck surgeons, surgical aids have been sought for decades. The purpose of this study was to evaluate the accuracy of prefabricated surgical resection templates used in mandibular segmental resections in comparison to the virtual surgical plan. A prospective study was performed in 11 consecutive patients, with a primary T4 oral squamous cell carcinoma or osteoradionecrosis of the mandible. Preoperatively, a CBCT scan was acquired to delineate the size and extension of tumor invasion; a virtual patient-specific resection template was designed based on this information. Intraoperatively, the resection template was positioned on the mandible and secured using four fixation screws. Postoperatively, a CBCT scan was acquired. This scan was superimposed on the preoperative scan. Positioning of the resection template and inclination of the resection planes were evaluated on the virtual head model. In order to test the interobserver reliability of these new measurement methods, two different observers executed all measurements. The mean shift of the proximal resection templates was 3.76 mm (standard deviation [SD] 3.10 mm). For the distal resection templates, the mean shift was 3.06 mm (SD 1.57 mm) with no significant interobserver difference (ICC = 0.99). An absolute mean deviation of 8.5° (SD 5.3°) was found for the proximal resection angle and 10.4° (SD 5.0°) for the distal resection angle. Again, no significant interobserver differences were found (ICC = 0.98). The resection templates used in this study proved reasonably accurate. Although the concept of virtual surgical planning aids significantly in mandibular reconstruction with microvascular free flaps, further improvement of resection accuracy is necessary for further improvement of reconstruction accurac

    Virtual Incision Pattern Planning using Three-Dimensional Images for Optimization of Syndactyly Surgery

    No full text
    Summary:. Syndactyly is a congenital condition characterized by fusion of the fingers. If not treated correctly during infancy, syndactyly may hinder the normal development of hand function. Many surgical techniques have been developed, with the main goal to create a functional hand with the smallest number of operative corrections. Therefore, exact preoperative planning of the reconstructive procedure is essential. An imaging method commonly used for preoperative planning is 3-dimensional (3D) surface imaging. The goal of this study was to implement the use of this technique in hand surgery, by designing a virtual planning tool for a desyndactylization procedure based on 3D hand images. A 3D image of a silicon syndactyly model was made on which the incision pattern was virtually designed. A surgical template of this pattern was printed, placed onto the silicon model and delineated. The accuracy of the transfer from the virtual delineation toward the real delineation was calculated, resulting in a mean difference of 0.82 mm. This first step indicates that by using 3D images, a virtual incision pattern can be created and transferred back onto the patient successfully in an easy and accurate way by using a template. Thereafter, 3D hand images of 3 syndactyly patients were made, and individual virtual incision patterns were created. Each pattern was transferred onto the patient by using a 3D printed template. The resulting incision pattern needed minor modifications by the surgeon before the surgery was performed. Further research and validation are necessary to develop the virtual planning of desyndactylization procedures
    corecore