29 research outputs found

    An ultracold electron source as an injector for a compact SASE-FEL

    No full text
    Ultracold electron sources based on near-threshold photoionization of laser-cooled atomic gases can produce ultrashort electron pulses with a brightness potentially exceeding conventional pulsed electron sources. They are presently being developed for single shot ultrafast electron diffraction, where a bunch charge of 100 fC is sufficient. For application as an injector for x-ray free electron lasers (FEL) a larger bunch charge is generally required. Here we present preliminary calculations of an ultracold electron source operating at bunch charges up to 1 pC. We discuss the relevant bunch degradation processes that occur when the charge is increased. Using general particle tracer tracking simulations we show that bunches can be produced of sufficient quality for driving a 1 Å self amplified spontaneous emission free electron laser (SASE-FEL) at 1.3 GeV electron energy. In addition we speculate on the possibility of using the ultracold source for driving a 15 MeV SASE-FEL in Compton backscatter configuration into the quantum FEL regime

    Ultracold electron source for single-shot, ultrafast electron diffraction

    No full text
    Ultrafast electron diffraction (UED) enables studies of structural dynamics at atomic length and timescales, i.e., 0.1 nm and 0.1 ps, in single-shot mode. At present UED experiments are based on femtosecond laser photoemission from solid state cathodes. These photoemission sources perform excellently, but are not sufficiently bright for single-shot studies of, for example, biomolecular samples. We propose a new type of electron source, based on near-threshold photoionization of a laser-cooled and trapped atomic gas. The electron temperature of these sources can be as low as 10 K, implying an increase in brightness by orders of magnitude. We investigate a setup consisting of an ultracold electron source and standard radio-frequency acceleration techniques by GPT tracking simulations. The simulations use realistic fields and include all pairwise Coulomb interactions. We show that in this setup 120 keV, 0.1 pC electron bunches can be produced with a longitudinal emittance sufficiently small for enabling sub-100 fs bunch lengths at 1% relative energy spread. A transverse root-mean-square normalized emittance of epsilon(x) = 10 nm is obtained, significantly better than from photoemission sources. Correlations in transverse phase-space indicate that the transverse emittance can be improved even further, enabling single-shot studies of biomolecular samples

    Measurement of force-assisted population accumulation in dark states

    No full text
    Atoms can be accumulated by velocity-selective coherent population trapping (VSCPT) in dark states of very highly monovelocity, resulting in very narrow distributions. The optical pumping process that permits the population accumulation proceeds by random walk in momentum space and is of limited eff iciency. Several authors have predicted that damping forces can enhance VSCPT in carefully chosen laser f ields. We present corroboration of this idea with measurements showing increased efficiency for VSCPT

    Ultracold electron source for single-shot, ultrafast electron diffraction

    No full text
    Ultrafast electron diffraction (UED) enables studies of structural dynamics at atomic length and timescales, i.e., 0.1 nm and 0.1 ps, in single-shot mode. At present UED experiments are based on femtosecond laser photoemission from solid state cathodes. These photoemission sources perform excellently, but are not sufficiently bright for single-shot studies of, for example, biomolecular samples. We propose a new type of electron source, based on near-threshold photoionization of a laser-cooled and trapped atomic gas. The electron temperature of these sources can be as low as 10 K, implying an increase in brightness by orders of magnitude. We investigate a setup consisting of an ultracold electron source and standard radio-frequency acceleration techniques by GPT tracking simulations. The simulations use realistic fields and include all pairwise Coulomb interactions. We show that in this setup 120 keV, 0.1 pC electron bunches can be produced with a longitudinal emittance sufficiently small for enabling sub-100 fs bunch lengths at 1% relative energy spread. A transverse root-mean-square normalized emittance of epsilon(x) = 10 nm is obtained, significantly better than from photoemission sources. Correlations in transverse phase-space indicate that the transverse emittance can be improved even further, enabling single-shot studies of biomolecular samples

    An ultracold electron source as an injector for a compact SASE-FEL

    Get PDF
    Ultracold electron sources based on near-threshold photoionization of laser-cooled atomic gases can produce ultrashort electron pulses with a brightness potentially exceeding conventional pulsed electron sources. They are presently being developed for single shot ultrafast electron diffraction, where a bunch charge of 100 fC is sufficient. For application as an injector for x-ray free electron lasers (FEL) a larger bunch charge is generally required. Here we present preliminary calculations of an ultracold electron source operating at bunch charges up to 1 pC. We discuss the relevant bunch degradation processes that occur when the charge is increased. Using general particle tracer tracking simulations we show that bunches can be produced of sufficient quality for driving a 1 Å self amplified spontaneous emission free electron laser (SASE-FEL) at 1.3 GeV electron energy. In addition we speculate on the possibility of using the ultracold source for driving a 15 MeV SASE-FEL in Compton backscatter configuration into the quantum FEL regime
    corecore