7 research outputs found

    Frustration-induced anomalous transport and strong photon decay in waveguide QED

    Full text link
    We study the propagation of photons in a one-dimensional environment consisting of two non-interacting species of photons frustratingly coupled to a single spin-1/2. The ultrastrong frustrated coupling leads to an extreme mixing of the light and matter degrees of freedom, resulting in the disintegration of the spin and a breakdown of the "dressed-spin", or polaron, description. Using a combination of numerical and analytical methods, we show that the elastic response becomes increasingly weak at the effective spin frequency, showing instead an increasingly strong and broadband response at higher energies. We also show that the photons can decay into multiple photons of smaller energies. The total probability of these inelastic processes can be as large as the total elastic scattering rate, or half of the total scattering rate, which is as large as it can be. The frustrated spin induces strong anisotropic photon-photon interactions that are dominated by inter-species interactions. Our results are relevant to state-of-the-art circuit and cavity quantum electrodynamics experiments.Comment: 5+13 pages, 3 + 6 figures. v2: changed title and presentatio

    Accurate methods for the analysis of strong-drive effects in parametric gates

    Full text link
    The ability to perform fast, high-fidelity entangling gates is an important requirement for a viable quantum processor. In practice, achieving fast gates often comes with the penalty of strong-drive effects that are not captured by the rotating-wave approximation. These effects can be analyzed in simulations of the gate protocol, but those are computationally costly and often hide the physics at play. Here, we show how to efficiently extract gate parameters by directly solving a Floquet eigenproblem using exact numerics and a perturbative analytical approach. As an example application of this toolkit, we study the space of parametric gates generated between two fixed-frequency transmon qubits connected by a parametrically driven coupler. Our analytical treatment, based on time-dependent Schrieffer-Wolff perturbation theory, yields closed-form expressions for gate frequencies and spurious interactions, and is valid for strong drives. From these calculations, we identify optimal regimes of operation for different types of gates including iiSWAP, controlled-Z, and CNOT. These analytical results are supplemented by numerical Floquet computations from which we directly extract drive-dependent gate parameters. This approach has a considerable computational advantage over full simulations of time evolutions. More generally, our combined analytical and numerical strategy allows us to characterize two-qubit gates involving parametrically driven interactions, and can be applied to gate optimization and cross-talk mitigation such as the cancellation of unwanted ZZ interactions in multi-qubit architectures.Comment: 20 pages, 9 figures, 62 reference

    Strongly correlated photonic materials: parametric interactions and ultrastrong coupling in circuit QED

    No full text
    In recent years, superconducting circuits have become a promising architecture for quantum computing and quantum simulation. This advancing technology offers excellent scalability, long coherence times, and large photon nonlinearities, making it a versatile platform for studying non-equilibrium condensed matter physics with light. This thesis covers a series of experiments and theoretical developments aimed at probing strongly correlated states of interacting photons. Building upon previous efforts on nonlinear superconducting lattices, this work focuses on establishing new platforms for generating interactions between microwave photons in multi-mode circuits. The first experiment presents a new paradigm in exploiting the nonlinearity of a Josephson junction to tailor the Hilbert space of harmonic oscillators using a dynamical three-wave mixing process. This allows a single microwave resonator to be addressed as a two-level system, offering a promising pathway to long-lived qubits. A theoretical proposal is outlined for building a field-programmable quantum simulator, harnessing this dynamical nonlinearity for stimulating strong photon-photon interactions. The system consists of a lattice of harmonic modes in synthetic dimensions, where particle hopping and on-site interactions can be independently controlled via frequency-selective flux modulation. Numerical studies show that for strong interactions the driven-dissipative steady-state develops a crystalline phase for photons. The second experiment explores the physics of quantum impurities, where a single well-controlled qubit is coupled to the many modes of a photonic crystal waveguide. The light-matter coupling strength is pushed into the ultrastrong coupling regime, where the qubit is simultaneously hybridized with many modes and the total number of excitations is not conserved. Probing transport through the waveguide reveals that the propagation of a single photon becomes a many-body problem as multi-photon bound states participate in the scattering dynamics. Furthermore, the effective photon interactions induced by just this single impurity leads to interesting inelastic emission of photons. Probing correlations in the field emission reveals signatures of multi-mode entanglement. This work presents opportunities for exploring large-scale lattices with strongly interacting photons. These platforms are compatible with well-established techniques for generating artificial magnetic fields and stabilizing many-body states through reservoir engineering, complementing growing efforts in the quest for building synthetic quantum materials with light

    Disorder-Assisted Assembly of Strongly Correlated Fluids of Light

    Full text link
    Guiding many-body systems to desired states is a central challenge of modern quantum science, with applications from quantum computation to many-body physics and quantum-enhanced metrology. Approaches to solving this problem include step-by-step assembly, reservoir engineering to irreversibly pump towards a target state, and adiabatic evolution from a known initial state. Here we construct low-entropy quantum fluids of light in a Bose Hubbard circuit by combining particle-by-particle assembly and adiabatic preparation. We inject individual photons into a disordered lattice where the eigenstates are known & localized, then adiabatically remove this disorder, allowing quantum fluctuations to melt the photons into a fluid. Using our plat-form, we first benchmark this lattice melting technique by building and characterizing arbitrary single-particle-in-a-box states, then assemble multi-particle strongly correlated fluids. Inter-site entanglement measurements performed through single-site tomography indicate that the particles in the fluid delocalize, while two-body density correlation measurements demonstrate that they also avoid one another, revealing Friedel oscillations characteristic of a Tonks-Girardeau gas. This work opens new possibilities for preparation of topological and otherwise exotic phases of synthetic matter
    corecore