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P H Y S I C S

Manybody interferometry of quantum fluids
Gabrielle Roberts1†, Andrei Vrajitoarea1,2†, Brendan Saxberg1, Margaret G. Panetta1,  
Jonathan Simon1,3,4,5, David I. Schuster1,3,4,6*

Characterizing strongly correlated matter is an increasingly central challenge in quantum science, where structure 
is often obscured by massive entanglement. It is becoming clear that in the quantum regime, state preparation 
and characterization should not be treated separately—entangling the two processes provides a quantum advan-
tage in information extraction. Here, we present an approach that we term “manybody Ramsey interferometry” 
that combines adiabatic state preparation and Ramsey spectroscopy: Leveraging our recently developed one-to-
one mapping between computational-basis states and manybody eigenstates, we prepare a superposition of ma-
nybody eigenstates controlled by the state of an ancilla qubit, allow the superposition to evolve relative phase, 
and then reverse the preparation protocol to disentangle the ancilla while localizing phase information back into 
it. Ancilla tomography then extracts information about the manybody eigenstates, the associated excitation spec-
trum, and thermodynamic observables. This work illustrates the potential for using quantum computers to effi-
ciently probe quantum matter.

INTRODUCTION
Advances in controllable quantum science platforms have opened 
the possibility of creating synthetic quantum materials, in which the 
physical laws governing the material are built to order in the labora-
tory (1–4). Such experiments enable time- and space-resolved probes 
(5–7) of quantum dynamics inaccessible in solid-state matter, as well 
as explorations of extreme parameter regimes (8–12). As the com-
munity has become increasingly adept at leveraging the flexibility of 
synthetic matter platforms to realize arbitrary physical laws, we now 
face the challenge of capitalizing on this same flexibility for preparing 
and characterizing quantum manybody states.

In electronic materials, preparing low-entropy equilibrium states 
relies upon refrigeration: harnessing the coupling of the material to a 
low-temperature reservoir that can absorb its entropy. By contrast, 
synthetic material platforms are known for their coherent, low-
dissipation evolution, and hence their lack of reservoir coupling. 
State preparation has thus relied upon the development of new ap-
proaches based on engineered reservoirs (1, 13–17) and adiabatic evo-
lution (12, 18, 19), elucidating, among other things, microscopic 
aspects of quantum thermodynamics (20, 21) and the importance of 
symmetry breaking (22), respectively.

Even once a manybody state is prepared, characterizing it pres-
ents unique challenges. The intuitively simplest but technically most 
demanding characterization approach is state tomography, where n-
body correlations are measured in complementary bases, allowing 
complete reconstruction of the system density matrix (23). This ap-
proach has the advantage that all information about the state is ex-
tracted, and the disadvantage that the required statistics (and thus 
measurement time) scale exponentially with system size. If specific 
rather than complete information about the state is desired, more 
carefully crafted protocols have been shown to relax measurement 

requirements: Expansion imaging measures single-particle coherence 
(24); noise correlations measure two-body ordering (25); in  situ 
density probes equation of state (26); Bragg spectroscopy is sensi-
tive to density (and spin) waves (27); particle-resolved readout 
accesses higher-order correlations (5, 8, 28–30); parity oscillations 
are clear signatures of Greenberger–Horne–Zeilinger states (31); 
single-qubit tomography probes global entanglement (8, 32); and 
shadow tomography (33) provides an efficient way to extract observ-
ables from few measurements.

It has nonetheless become apparent that treating state prepara-
tion and state characterization as independent does not fully lever-
age quantum advantage—approaches that entangle the two tasks 
via an ancilla can be vastly more performant: Proposals and experi-
ments to quantify scrambling (34–36) and verify manybody localiza-
tion (37) rely upon out-of-time-order correlators that compare 
manybody states to which a specific operator is applied either be-
fore or after coherent evolution. This is achieved by entangling the 
time at which the operator is applied with the state of an ancilla 
and subsequently performing tomography on the ancilla. Similarly, 
Loschmidt echoes directly measure the impact of perturbations via 
state overlap measurements following evolution under two similar 
Hamiltonians (38, 39). Sensitivity and dynamic range enhancements 
in sensing (40) can be achieved by sandwiching ancilla-conditioned 
dynamics between quantum Fourier transforms. Entangling initial 
states with an ancilla and applying ancilla-conditioned evolution 
can further probe anyon braiding phase (41) and system spectrum 
(42, 43).

Here, we introduce manybody Ramsey interferometry as a direct 
probe of thermodynamic observables: We entangle which manybody 
state we prepare in a Bose-Hubbard circuit with the state of an an-
cilla qubit, allow the superposition to evolve, disentangle from the 
ancilla, and perform ancilla tomography to learn about the many-
body states. We rely upon our recently demonstrated reversible one-
to-one mapping of computational states onto manybody states (32) 
to achieve the ancilla/manybody state entanglement. Because we en-
tangle and then disentangle the ancilla from the manybody system, 
we localize the sought-after information in a single qubit for effi-
cient, high signal-to-noise readout, rather than extracting it from a 
many-qubit state space (42–45).
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In the following section, we introduce our circuit platform and 
manybody Ramsey protocol. We demonstrate the protocol and use 
manybody Ramsey to probe adiabaticity of state preparation. Finally, 
we use manybody Ramsey to directly measure thermodynamic ob-
servables of a strongly interacting quantum fluid by studying super-
positions of (i) particle number and (ii) system size.

RESULTS
The platform
The properties of our synthetic quantum material platform are ac-
curately captured by a one-dimensional (1D) Bose-Hubbard model 
(see Fig. 1B), describing bosonic particle tunneling between lattice 
sites at rate J, in the presence of onsite interactions of energy U

Our Hubbard lattice is realized in a quantum circuit (1, 17, 46): Sites 
are implemented as transmon qubits, particles as microwave photon 
excitations of the qubits, tunneling (J) as capacitive coupling between 
the qubits (Fig. 1, A and B), and onsite interactions (U) as transmon 
anharmonicity. Lattice site energies (qubit frequencies) can be indi-
vidually and dynamically tuned using flux bias lines (see Table 1). For 
this work, J/2π = −9 MHz, U/2π = −240 MHz, and ωlat/2π ≈ 5 GHz. 
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Fig. 1. Preparing and interfering manybody states. The quantum system probed in this work consists of a chain of seven capacitively coupled superconducting trans-
mon qubits (59) [blue in (A)] connected to site-resolved readout resonators (meandering traces) and flux control (bottom traces). (B) The system is well described by the 
Bose-Hubbard model: particles (microwave photons) coherently tunnel between lattice sites (qubits) at a rate J, with on-site interactions U ≫ J arising from the transmon 
anharmonicity (1, 17, 46). Real-time flux tuning provides control of lattice site energies (δi for site i), allowing the deterministic manipulation of disorder that we leverage 
to build highly entangled states. (C) Starting in a highly disordered lattice, we initialize the system in a chosen energy N-particle eigenstate by applying π pulses to 
N empty sites (left) and adiabatically removing disorder to convert these states into eigenstates of the quantum fluid (right) (32). (D) To interfere superpositions of such 
states, we replace one of the assembly π pulses with a π

2
 pulse on the qubit with a green highlight in the figure (referred to as the ancilla qubit in the main text), producing 

a superposition of two (red/blue) eigenstates. Adiabatically removing disorder produces a superposition of two manybody fluid states; coherently evolving for a time T 
allows the eigenstates to accumulate a relative phase proportional to their energy difference; ramping back to the disordered configuration (right) relocalizes the phase 
difference into the single qubit that started in a superposition; a final π

2
 pulse on this qubit maps the phase information onto qubit occupancy for measurement. (E) Rein-

terpretation of the full manybody Ramsey sequence as a set of gates on the qubits comprising the lattice, resulting in an interference fringe versus evolution time T.
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The tuning range of our qubits extends from 
ωqb

2π
∼ 3 to 6 GHz. The 

photon lifetime T1 ≈ 40 μs is much longer than the timescale of the 
manybody dynamics (see Table 1 for details).

We recently demonstrated adiabatic preparation of photonic 
fluids by leveraging real-time (≪ tunneling time) control of lattice 
disorder (32). This protocol begins with lattice sites tuned apart in 
energy by more than the tunneling J. In this configuration, the 
many-particle eigenstates are localized into product states over in-
dividual sites such that any eigenstate may be prepared via site-
resolved microwave π pulses that inject individual photons. By next 
adiabatically removing the lattice disorder, we smoothly convert 
the localized eigenstates of the disordered system into the corre-
sponding highly entangled eigenstates of the disorder-free system 
(Fig. 1C). The combination of the one-to-one mapping and the ease 
of state preparation in the disordered (staggered) system renders 
it straightforward to prepare any eigenstate of the ordered system pro-
vided sufficient coherence time to ensure adiabaticity in the disorder-
removal ramp.

We now harness this precise eigenstate preparation to explore 
controlled interference of many-particle quantum states. Our ap-
proach can be understood in analogy to traditional Ramsey spec-
troscopy of a single qubit (47) with states |0⟩ and |1⟩: In this simpler 
case, a system prepared in |0⟩ is driven into an equal superposition 
of |0⟩ and |1⟩ with a π

2
 pulse, and after an evolution time T, the phase 

accrued between |0⟩ and |1⟩ is read out with a second phase-coherent 
π

2
 pulse: The resulting population difference between |0⟩ and |1⟩ 

states oscillates (versus evolution time T) at a frequency set by the 
energy difference between the states.

To extend the protocol to measurement of the phase difference 
between two manybody states, we take the single-qubit Ramsey 
sequence above and sandwich the delay time T between qubit-
conditioned assembly and disassembly of the manybody states. We 
call this approach “manybody Ramsey interferometry” to connect 
with previous work exploring non-adiabatic evolution of many-
body systems (36, 44, 45). This procedure maps the phase accrued 
between the manybody states entirely onto the single qubit, avoid-
ing any reduction in contrast due to residual entanglement, at mea-
surement time, with the manybody system. The enabling ingredient 
for this protocol is qubit-conditioned manybody state preparation, 
which we implement via our disorder-assisted adiabatic assembly 
techniques (32).

An example of the full protocol is shown in Fig. 1D. In the presence 
of disorder, we prepare a superposition of energy states of the N = 1 
and N = 2 particle manifolds   ∣Ψi

⟩ = 1√
2
( ∣0000010⟩ + ∣0100010⟩ ) =

∣0⟩ ⊗ ∣0 ⟩ + ∣1 ⟩√
2

⊗ ∣00010⟩ . The key to this protocol is that in the 
presence of disorder the superposition of the two manybody states 

is realized as a superposition of a single control qubit, realized with 
a π

2
 pulse. As we adiabatically remove the disorder, the localized 

states melt into corresponding eigenstates of the quantum fluid. 
During the subsequent hold time T, these states will accrue a relative 
phase proportional to their energy difference, (ωi − ωj)T. Finally, 
to relocalize the information back into the control qubit, we adia-
batically reintroduce lattice disorder, producing the final state: 

 . 
The phase accrued between the manybody states has now been writ-
ten entirely into the control qubit. We extract that phase informa-
tion (and thus the manybody energy difference) with a final π

2
 pulse 

on the control qubit and a population measurement in the |0〉,|1〉 
basis. The complete pulse sequence is illustrated in Fig. 1E.

Demonstration of the protocol
We benchmark our manybody Ramsey protocol by studying the 
superposition of one- and two-photon fluid ground states in our 
Hubbard circuit. In Fig. 2A, we prepare these states separately (red 
and blue boxes) by π-pulsing localized particles into the disordered 
lattice and then adiabatically removing the disorder, finding good 
agreement of the measured in situ density profiles with a parameter-
free Tonks gas model (48, 49) (see the Supplementary Materials, sec-
tion C). When the second particle is instead injected with a π

2
 pulse, 

we create the desired superposition state, with a density profile reflect-
ing the average of the two participating eigenstates (green box).

To measure the energy difference between these states, we must 
interfere them. We achieve this by replacing the in situ density mea-
surement with a coherent evolution time T, allowing the states to 
accrue a relative phase (Fig. 2B), followed by adiabatically reintro-
ducing the disorder to relocalize the phase information into a sin-
gle lattice site (qubit) and finally applying a π

2
 pulse to interfere the 

states and read out the encoded phase in the occupation basis. The 
resulting sinusoidal Ramsey fringe (occupation versus T) is shown 
in Fig.  2C, with contrast limited in this experiment by qubit de-
phasing (see Table 1). Both dephasing and dissipation lead to re-
duction in fringe contrast without changing fringe frequency, while 
non-adiabatic ramping results in additional frequency components 
(discussed further in the following sections). The fringe frequency 
of 10 MHz is translated down (for clarity) from the actual energy 
difference of 5.317 GHz via a T-dependent phase offset of the 
second π

2
 pulse (see the Supplementary Materials, section A). Simi-

lar experiments enable single-qubit measurement of energy differ-
ences of 2/3 and 3/4 particle superposition states (Fig. 2D), with 
minimal contrast reduction and only a small drop in coherence 
time. We are thus prepared to apply the protocol to exploration of 
manybody physics.

Table 1. System parameters. 

Qubit 1 2 3 4 5 6 7

Ulattice/2π (MHz) −236 −235 −209 −234 −236 −231 −225

Ji,i+1/2π (MHz) −9.62 −9.58 −9.63 −9.74 −9.76 −9.63 –

T1 (μs) 14.6 35.5 57.7 28.4 60.3 54.7 40.0

T2
* (μs) 0.85 0.64 1.31 0.77 3.57 0.84 1.4
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Probing the excitation spectrum
Our manybody Ramsey protocol relies upon our ability to adiabati-
cally assemble and disassemble highly entangled states. If the state 
assembly is non-adiabatic, we imperfectly prepare the target states of 
our quantum fluid; if the disassembly is non-adiabatic, then we im-
perfectly map them back to the initial qubits. One might expect that 
such non-adiabaticity would simply reduce the contrast of the result-
ing manybody Ramsey fringe, but the reality is more subtle: To the 
extent that the non-adiabaticity is minimal, only a small amount of 
population is transferred out of the instantaneous eigenstates during 
assembly, of which some fraction is transferred back during disas-
sembly (see Fig. 3A). This has the effect of adding new frequency 
components to the Ramsey fringe, which provide information about 
the excitation spectrum of the manybody system.

We investigate this phenomenon in Fig. 3 (B to D) by varying the 
length τ of our adiabatic assembly and disassembly ramps. In Fig. 3B, 
we plot the Fourier transform of the Ramsey fringe for the slowest 
(upper) and fastest (lower) ramps: When the ramp is slow compared 
with manybody gaps (τ = 1 μs ≫J−1), we observe a single-frequency 
component in the Ramsey spectrum indicating preparation of a su-
perposition of only a single pair of states. When the ramp is fast (τ = 
1 ns ≪ J−1), we observe numerous frequency components in the 

Ramsey spectrum indicating that we have prepared numerous pairs 
of states that then interfere. In Fig. 3C, we plot the Fourier spectrum 
as we tune the ramp time τ over three decades, observing the appear-
ance of increasing numbers of peaks as the ramp gets faster. Repeat-
ing this experiment with more particles (Fig. 3D) reveals fewer total 
peaks, despite the larger state space accessible with more particles. 
This occurs because the number of accessible states grows so rapidly 
that for all but the slowest ramps the features overlap and smear into 
a continuum.

In practice, achieving the best spectroscopic resolution for the 
Ramsey signal frequency is a balancing act between (i) particle loss/
dephasing if the protocol takes too long compared to the photon 
T1/T2 (see the “Device parameters” section in Materials and Meth-
ods) and (ii) reduction in the spectral weight of the correct Fourier 
peak if the adiabatic ramp time τ is too small and the wrong many-
body states are prepared. To circumvent decoherence in larger sys-
tems, we choose faster ramps that induce some diabatic excitation 
without obscuring the correct Fourier feature.

Extracting thermodynamic observables
Having demonstrated the ability to interferometrically extract the en-
ergy difference of arbitrarily chosen manybody states, we now apply 

Fig. 2. Benchmarking the manybody Ramsey protocol. (A) To explore this protocol in the laboratory, we deterministically inject particles into a disordered lattice and 
remove the disorder (left), before imaging the resulting density distribution. When we inject precisely one photon (upper blue panel), adiabatic disorder removal pro-
duces the lowest-momentum particle-in-a-box state (lower blue panel); injecting two photons (upper red panel) produces the lowest-energy two-body state after disor-
der is removed (lower red panel). If we deterministically inject the first particle with a π pulse but π

2
 pulse the second photon, we should produce the manybody superposition 

state, and we observe the average of the two density distributions (green panels). (B) To demonstrate that this average density distribution corresponds to the macro-
scopic superposition of manybody states, we allow the superposition state to evolve on the Bloch sphere before adiabatically mapping the manybody superposition back 
onto a single qubit, where it can be read out via a second π

2
 pulse. (C) The resulting Ramsey fringe (versus hold time T in the manybody superposition state) evolves with 

a frequency given by the energy difference between the manybody states minus the frequency of the local oscillator from which the π
2
 pulses are derived, exhibiting 

contrast over several microseconds limited by the single-qubit T2 (see the Supplementary Materials). In (D), we demonstrate the applicability of the approach to larger 
systems by applying it to superpositions of N = 2, 3 and N = 3, 4 particle fluids; the increased decay reflects the faster dephasing of states with more particles. Fits to data 
in (C) and (D) are plotted as solid green lines; the frequency deviation from numerics are 400 kHz, 2 kHz, and 2 MHz, respectively. Representative error bars (on first data 
point of each plot) reflect the SEM.
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the technique to the measurement of thermodynamic observables of 
a quantum fluid. To do this, we rely upon the fact that thermody-
namic quantities like the chemical potential and the pressure may be 
understood as the rate of change of the system energy with density, 
and thus particle number, a quantity that our manybody interferom-
etry technique probes directly.

The chemical potential is the energy required to add a particle to the 

manybody system at fixed system size V, μ = E
N+1,V − E

N ,V ≈ �E

�N

|||
V

 : 
We thus measure μ by performing manybody Ramsey interfero 
metry between the N and N + 1 particle ground states. In Fig. 4A, we 
demonstrate this measurement for the superposition of N = 1 and N = 
2 particles as we vary the number of accessible sites V. At each V, the 
Fourier frequency with the largest oscillation amplitude corresponds 
to the chemical potential. In Fig. 4B, we plot this chemical potential 
versus V, repeating the measurements for particle numbers from 
an empty system N = 0 to a filled system N = V − 1. In Fig. 4C, we 
replot the data versus the density ρ ≡ N

V
 , finding collapse onto a uni-

versal (intensive) form μ = −2Jcos(πρ): Adding particles reduces the 
volume available to each particle, increasing the uncertainty-
induced kinetic energy required to add it to the system. These data 
are consistent with a free-fermion model (see the Supplementary 
Materials, section E) (50, 51) modulo small system-size corrections 
(see the Supplementary Materials, section F.1). Beyond unit filling, 
we observe an additional energy cost U per particle reflecting the 
incompressibility of the unit-filled Mott-insulating state (50).

The pressure is the force required to maintain the fluid at fixed 
size, or equivalently the energy required to reduce the system size 
P = E

N ,V − E
N ,V+1 ≈ − �E

�V

|||
N

 . To directly measure the pressure, we 
thus need to perform manybody interferometry between systems of 

different sizes rather than different particle numbers. We achieve this 
by engineering our ancilla qubit to control the system size: As shown 
in Fig. 4D, the ancilla site is detuned in energy by U, ensuring that 
when it is empty particles cannot tunnel onto it (reducing the sys-
tem size by one site), and when it is occupied particles can tunnel 
(Bose-enhanced tunneling onto the occupied ancilla is compensat-
ed by Floquet engineering; see the Supplementary Materials, section 
B). The measured pressures for all particle numbers and system sizes 
are shown in Fig.  4E. They are replotted versus density in Fig.  4, 
demonstrating that higher densities lead to more uncertainty pres-
sure, again in agreement with a free-fermion model anticipated to 
describe the 1D hardcore bosons in our experiments (see the Sup-
plementary Materials, section C).

DISCUSSION
We have introduced a probe of synthetic quantum matter that ac-
cesses manybody observables by blurring the boundary between state 
preparation and measurement. Rather than first preparing a state and 
then characterizing it, we instead control what manybody state we 
prepare with an ancilla qubit, coherently reverse the preparation pro-
cedure to disentangle the ancilla from the manybody system, and sand-
wich this process within an ancilla Ramsey sequence. This manybody 
Ramsey interferometry protocol enables direct measurement of en-
ergy differences of different eigenstates of the same system, as well as 
the same eigenstate of different systems. We use it to directly extract 
thermodynamic properties of a quantum fluid.

Because the manybody Ramsey protocol relies upon reversible 
adiabatic assembly of manybody states (32), it requires only a small 
factor more coherence time than adiabatic state preparation. In other 
words, if you can build a state, you can characterize it with manybody 

Fig. 3. Spectroscopic signatures of adiabaticity. The manybody Ramsey protocol relies critically on the ability to adiabatically map localized states into and out of highly 
entangled states (in a ramp time τ). (A) Ramping too quickly leads to diabatic excitations (purple) into other manybody states that do not interfere with the states (red/
blue) in the prepared superposition (green) and thus reduce Ramsey fringe contrast. With some probability, however, these diabatic excitations are diabatically de-excited 
back into the initial state (red) during the backwards ramp; because these excitations evolve at different frequencies (corresponding to their energies) during the hold 
time T, they produce Ramsey fringes at other Fourier frequencies. (B) For the slowest ramp (τ = 1 μs), there are no diabatic excitations, producing a single Fourier feature 
in the Ramsey interference between N = 0 and N = 1 eigenstates. (C) For the fastest ramp (τ = 1 ns), the many diabatic excitations are reflected in additional frequencies 
in the Ramsey fringe beyond the dominant feature in the slow ramp. As the ramp time τ is varied over three decades, frequency components furthest from the dominant 
feature disappear first, with the low-offset-frequency features disappearing only for the slowest ramps, consistent with excitation rates controlled by the energy gaps of 
the fluid. Insets depict the time-domain Ramsey fringes for slow, intermediate, and fast ramps (top to bottom). (D) Repeating these experiments with superpositions of N = 
1,2 and N = 2,3 particles demonstrates that while the proliferation of manybody states makes resolving diabatic excitations challenging, the dominant feature nonethe-
less appears for the slowest ramps.
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Ramsey interferometry. In long ramps where contrast is strongly sup-
pressed by decoherence, one can trade off a faster ramp for some 
diabatic excitations, increasing the contrast of the desired Fourier 
component despite introducing some other low-amplitude Fourier 
features as discussed in the “Probing the excitation spectrum” sec-
tion and in the Supplementary Materials, section B.1.

Marrying these techniques with recent advances in topological 
quantum matter (52) will enable probes of fractional statistics (53); 
applying the techniques to glassy (54, 55) or time-crystalline (56, 57) 
phases has the potential to shed light on their structure. We antici-
pate opportunities to apply manybody Ramsey interferometry to 
cold atoms, particularly in topological (19) or fermionic sectors 
(58). Marrying this tool with a quantum Fourier transform suggests 
yet more efficient approaches to quantum sensing in manybody 
systems (40). More broadly, this work invites the question: What 
observables become accessible when multiple ancillas are entangled 
with, and then disentangled from, a quantum material? We envision 
a future where hitherto unimagined observables are probed by 
entangling quantum matter with small quantum computers.

MATERIALS AND METHODS
Device fabrication
The sample is a 10 × 20 mm sapphire chip with a tantalum base layer 
and aluminum Josephson junctions and SQUID loops. Our substrate 
is a 450-μm-thick C-plane sapphire wafer that has been annealed at 
1500°C for 2 hours, solvent-cleaned, etched in 80°C Nano-Strip for 
10 min, and then etched again in 140°C sulfuric acid to fully remove 
all contaminants. The large-scale features of the device are defined 
using optical lithography. The base layer is 200 nm of tantalum 
deposited at 800°C, then patterned with a direct pattern writer 
(Heidelberg MLA 150), and wet-etched in hydrofluoric acid. 
Next, the junctions and SQUID loops are defined with electron 
beam lithography, using a methyl methacrylate - poly methyl meth-
acrylate (MMA-PMMA) bilayer resist, written on a Raith EBPG5000 
Plus E-Beam Writer. The Al/AlOx/Al junctions are e-beam evapo-
rated in an angled evaporator (Plassys MEB550). Before Al deposition, 
Ar ion milling is used on the exposed Ta to etch away the Ta oxide 
layer to ensure electrical contact between the Ta and Al layers. The 
first layer of Al (60 nm, deposited at 0.1 nm/s) is evaporated at an 

Fig. 4. Spectroscopic probes of thermodynamics. Manybody Ramsey interferometry offers new ways to characterize synthetic quantum matter: (A to C) The chemical 
potential μ = EN+1,V − EN,V quantifies the energy required to add a particle to a manybody system, and we measure it by interfering states of different particle number. 
(A) is a sample dataset showing the Ramsey spectrum for the superposition of N = 1,2 particles as we vary the total system size V. For each V, the chemical potential μ is 
assigned to the frequency of maximal spectral density, which we plot in (B) for all fillings up to unit filling N = 0…V − 1, and all system sizes V = 1...7. Exact values calcu-
lated from numerics using our measured device’s parameters are plotted with gray dashed lines. In (C), we replot all data versus the density ρ ≡ N/V, finding a collapse 
onto a universal sinusoidal form (gray dashed line) consistent with a free-fermion model (50). (D to F) The pressure P = EN,V+1 − EN,V quantifies the energy required to 
change the system size, and we measure it by interfering states of different system size. We achieve controlled superpositions of system sizes using the approach shown 
in (D): the controlling site is U-detuned such that when it is empty, it is energetically inaccessible, reducing the system size by a single site; when it is filled, it becomes 
accessible and accordingly increases the system size. Using this site as the control in a manybody Ramsey experiment allows us to extract the energy difference between 
N particles melted into V + 1 versus V sites (see the Supplementary Materials, section B). Performing this protocol for different volumes V and particle numbers N pro-
duces the raw data in (E), which we rescale versus density in (F), again finding agreement with a free-fermion theory. Error bars, where larger than the data point, reflect 
the SEM (see the Supplementary Materials, section K).
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angle of 30° to normal, followed by static oxidation in O2 for 24 min 
at 50 mbar. The second layer of Al (150 nm, 0.1 nm/s) is then evapo-
rated at 30° to normal but orthogonal to the first layer in the substrate 
plane to form the Manhattan-style junctions.

Device parameters
The optimal lattice frequency varied on a scale of weeks depending 
on the frequency distribution of low lifetime defects. For data taken 
for Fig. 2, we used lattice frequency 5.31 GHz, for Fig. 3 we used lat-
tice frequency 4.820 GHz, and for Fig. 4 we used lattice frequency 
5.0 GHz. Our qubit T1s and T2s similarly varied over time, with the 
average T1 = 40 μs and average T2

* = 1.3(μs). Our qubit T2 times 
when all the qubits are on resonance improve, since, because of the 
avoided crossings, the eigenvalue versus flux curves become flatter 
(we generate our own sweet spot). We did not quantitatively mea-
sure this effect.

Microwave wiring
The device is mounted and wire-bonded to a multilayer copper printed 
circuit board. The ground plane around the device features is also 
heavily wire-bonded to avoid slotline modes and to fully connect the 
ground plane across the chip. The device is enclosed in an oxygen-free 
high thermal conductivity (OFHC) copper mount designed to elimi-
nate spurious microwave modes near our operating frequencies.

The packaged sample is mounted to the base plate of a BlueFors 
dilution refrigerator at a nominal temperature of 8 mK. A solenoid of 
coiled niobium-titanium (NbTi) wire is fixed to the packaged sample 
to provide a global bias field with little heating, useful for getting close 
to desired lattice flux bias point without driving too much current 
through the DC flux lines. The sample is placed in a heat-sunk can 
consisting of a thin high-purity copper shim shield, followed by a 
high-purity superconducting lead shield, followed by two μ-metal 
shields (innermost to outermost) to provide additional shielding from 
radiation and external magnetic fields. Control and probe microwave 
signals run from a room-temperature measurement setup through 
microwave coaxial cables and DC twisted pair wires into the shielded 
sample. Superconducting NbTi lines carry signal from the sample 
back to the room temperature homodyne setup. See the supplement 
of our previous work (32) for further details on cryogenic and room-
temperature wiring.

See the supplement of our previous work (32) (which used the 
same device and setup) for further details on cryogenic and room-
temperature wiring device parameters, DC and RF (radio frequency) 
flux calibrations, flux line transfer function correction, and readout 
methods. The RF cross-talk measured at 100 MHz for experiments 
involving modulation in this work is lower, close to 2 to 3%.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S9
Table S1
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