61 research outputs found
Species of Bursaphelenchus Fuchs, 1937 (Nematoda: Parasitaphelenchidae) and other nematode genera associated with insects from Pinus pinaster in Portugal
Insects associated with maritime pine, Pinus pinaster, in Portugal were collected
and screened for the presence of Bursaphelenchus species. Nematodes were
identified using Internal Transcribed Spacers-Restriction Fragment Length
Polymorphism (ITS-RFLP) analysis of dauer juveniles and morphological
identification of adults that developed from dauer juveniles on fungal cultures
or on cultures in pine wood segments at 26 C. Several associations are
described: Bursaphelenchus teratospicularis and Bursaphelenchus sexdentati are
associated with Orthotomicus erosus; Bursaphelenchus tusciae, B. sexdentati and/or
Bursaphelenchus pinophilus with Hylurgus ligniperda and Bursaphelenchus hellenicus
with Tomicus piniperda, Ips sexdentatus and H. ligniperda. An unidentified
Bursaphelenchus species is vectored by Hylobius sp. The previously reported
association of Bursaphelenchus xylophilus with Monochamus galloprovincialis
was confirmed. The association of Bursaphelenchus leoni with Pityogenes sp. is
not definitively established and needs further studies for clarification.
Other nematode genera besides Bursaphelenchus were found to be associated
with the insects sampled, including two different species of Ektaphelenchus, Parasitorhabditis
sp., Parasitaphelenchus sp., Contortylenchus sp. and other unidentified
nematodes. The Ektaphelenchus species found in O. erosus is morphologically
similar to B. teratospicularis found in the same insect; adults of both the species
are found in cocoon-like structures under the elytra of the insects.
Introduction
Approximately one third of the nematodes belonging to
the order Aphelenchida Siddiqi, 1980 are associated with
insects (Poinar, 1983). These nematodes establish a variety
of associations with the insects, which may be
described as commensalism, e.g. phoresy (to the benefit
of the nematode but not affecting the insect), mutualism
(both the organisms benefit) or parasitism (nematodes
benefit at the expense of the insect) (Giblin-Davis,
2004).
Most Bursaphelenchus Fuchs, 1937 species are mycetophagous,
feeding on fungi in the galleries of bark beetles
and thu
The <i>Pratylenchus penetrans</i> transcriptome as a source for the development of alternative control strategies:mining for putative genes involved in parasitism and evaluation of <i>in planta</i> RNAi
The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic nematode, we used Illumina mRNA sequencing analysis of a mixed population, as well as nematode reads detected in infected soybean roots 3 and 7 days after nematode infection. Over 140 million paired end reads were obtained for this species, and de novo assembly resulted in a total of 23,715 transcripts. Homology searches showed significant hit matches to 58% of the total number of transcripts using different protein and EST databases. In general, the transcriptome of P. penetrans follows common features reported for other root lesion nematode species. We also explored the efficacy of RNAi, delivered from the host, as a strategy to control P. penetrans, by targeted knock-down of selected nematode genes. Different comparisons were performed to identify putative nematode genes with a role in parasitism, resulting in the identification of transcripts with similarities to other nematode parasitism genes. Focusing on the predicted nematode secreted proteins found in this transcriptome, we observed specific members to be up-regulated at the early time points of infection. In the present study, we observed an enrichment of predicted secreted proteins along the early time points of parasitism by this species, with a significant number being pioneer candidate genes. A representative set of genes examined using RT-PCR confirms their expression during the host infection. The expression patterns of the different candidate genes raise the possibility that they might be involved in critical steps of P. penetrans parasitism. This analysis sheds light on the transcriptional changes that accompany plant infection by P. penetrans, and will aid in identifying potential gene targets for selection and use to design effective control strategies against root lesion nematodes
- …