3 research outputs found

    Spectral characterization of the fluorescent components present in humic substances, fulvic acid and humic acid mixed with pure benzo( a )pyrene solution

    Get PDF
    International audienceThe fate of benzo(a)pyrene (BaP), a ubiquitous contaminant reported to be persistent in the environment, is largely controlled by its interactions with the soil organic matter. In the present study, the spectral characteristics of fluorophores present in the physical fractions of the soil organic matter were investigated in the presence of pure BaP solution. After extraction of humic substances (HSs), and their fractionation into fluvic acid (FA) and humic acid (HA), two fluorescent compounds (C1 and C2) were identified and characterized in each physical soil fraction, by means of fluorescence excitation-emission matrices (FEEMs) and Parallel Factor Analysis (PARAFAC). Then, to each type of fraction having similar DOC content, was added an increasing volume of pure BaP solution in attempt to assess the behavior of BaP with the fluorophores present in each one. The application of FEEMs-PARAFAC method validated a three-component model that consisted of the two resulted fluorophores from HSs, FA and HA (C1 and C2) and a BaP-like fluorophore (C3). Spectral modifications were noted for components C2HSs (C2 in humic substances fraction) (λex/λem: 420/490-520 nm), C2FA (C2 in fulvic acid fraction) (λex/λem: 400/487(517) nm) and C1HA (C1 in humic acid fraction) (λex/λem: 350/452(520) nm). We explored the impact of increasing the volume of the added pure BaP solution on the scores of the fluorophores present in the soil fractions. It was found that the scores of C2HSs, C2FA, and C1HA increased when the volume of the added pure BaP solution increased. Superposition of the excitation spectra of these fluorophores with the emission spectrum of BaP showed significant overlaps that might explain the observed interactions between BaP and the fluorescent compounds present in SOM physical fractions

    Genetic diversity and phenotypic plasticity of AHL-mediated Quorum sensing in environmental strains of Vibrio mediterranei

    No full text
    International audienceN-Acyl homoserine lactone (AHL)-mediated Quorum sensing (QS) is one of the most studied social behavior among Proteobacteria. However, despite the current knowledge on QS-associated phenotypes such as bioluminescence, biofilm formation, or pathogenesis, the characterization of environmental factors driving QS in realistic ecological settings remains scarce. We investigated the dynamics of AHL and AHL-producing Vibrio among 840 isolates collected fortnightly from the Salses-Leucate Mediterranean lagoon in spring and summer 2015 and 2016. Vibrio isolates were characterized by gyrB gene sequencing, Enterobacterial repetitive intergenic consensus polymerase chain reaction, and genome sequencing, and AHL production was investigated by a biosensors-based UHPLC–HRMS/MS approach. Our results revealed, for the first time, a succession of V. mediterranei isolates with different AHL production phenotypes over time and this dynamics was observed in a single genotype (average genomic nucleotide identity >99.9). A multivariate DistLM analysis revealed that 83.4% of the temporal variation of V. mediterranei QS phenotypes was explained by environmental variables. Overall, our results suggest that isolates of a single genotype are able to change their QS phenotypes in response to environmental conditions, highlighting the phenotypic plasticity of bacterial communication in the environment

    Bages-Sigean and Canet-St Nazaire lagoons (France): physico-chemical characteristics and contaminant concentrations (Cu, Cd, PCBs and PBDEs) as environmental quality of water and sediment

    No full text
    International audienceEnvironmental characteristics in water and sediments of two contrasted coastal Mediterranean lagoons, Bages-Sigean and Canet-St Nazaire, were measured over a three season survey. The urban pollution (treatment plant discharges) is very important in Canet-St Nazaire lagoon reflecting untreated sewages, while in Bages-Sigean, the northern part appears more impacted due to larger anthropogenic inputs. Dissolved Cd concentrations are on the whole similar in both lagoons, whereas Cu concentrations are by far higher in lagoon Canet-St Nazaire. Cu concentrations appear to be highly dependent on dissolved organic carbon whereas salinity seems to control Cd variations. Concerning the sediments, the confined northern part of lagoon Bages-Sigean shows organic carbon and total nitrogen enrichment whereas lipid concentrations are much higher in the Canet-St Nazaire lagoon. Cu complexation seems to be strongly related to organic matter as evidenced by the two significant positive relationships, on one hand between Cu and organic carbon, and on the other hand, between Cu and lipids. On the contrary, Cd concentrations appear to be mainly controlled by carbonates. PCBs and PBDEs were detected only in sediments and show relatively low concentrations compared to similar lagoon environments. Regarding the sediment quality guidelines, Cd, Cu and PCBs in both lagoons did not exceed any Probable Effect Concentration (PEC)
    corecore