29 research outputs found
Experimental and numerical studies on the flow characteristics and separation properties of dispersed liquid-liquid flows
© 2019 Author(s). The local dynamics of spatially developing liquid-liquid dispersed flows at low superficial velocities, ranging from 0.2 to 0.8 m s-1, are investigated. The dispersions are generated with an in-line static mixer. Detailed measurements with laser-based diagnostic tools are conducted at two axial pipe locations downstream of the mixer, namely, at 15 and 135 equivalent pipe diameters. Different flow patterns are recorded, and their development along the streamwise direction is shown to depend on the initial size and concentration of the drops as well as the mixture velocity. The drop size is accurately predicted by an empirical formula. The variations in drop concentration over the pipe cross-section along the pipe result in local changes of the physical properties of the mixture and consequently in asymmetrical velocity profiles, with the maxima of the velocity located in the drop-free region. Computational fluid dynamics simulations based on a mixture approach predict the experimental results close to the experimental uncertainties for the majority of the cases. The simulation results reveal that gravity and lift forces, as well as shear-induced diffusion are the most important mechanisms affecting the drop migration. It is found that the drops behave as suspensions of rigid spheres for the conditions investigated, despite the deformation effects, which are found experimentally to be stronger at the densely packed region
Simplified mechanistic model for the separation of dispersed oil-water horizontal pipe flows
A mechanistic model that predicts the separation of oil-water dispersed horizontal pipe flows was investigated. Different droplet diameter averages were implemented in the model and the accuracy of the resulting predictions was assessed by comparing each case against experimental data. The experimental data used was obtained in a pilot scale two-phase flow facility using tap water and oil (828 kg m-3, 5.5 mPa s) as test fluids. The results show that the separation length is highly sensitive to the drop diameter, but further investigation is required to determine which drop diameter average produces more accurate predictions of the flow profile
Surfactant effects on the coalescence of a drop in a Hele-Shaw cell
In this work the coalescence of an aqueous drop with a flat aqueous-organic interface was investigated in a thin gap Hele-Shaw cell. Different concentrations of a nonionic surfactant (Span 80) dissolved in the organic phase were studied. We present experimental results on the velocity field inside a coalescing droplet in the presence of surfactants. The evolution of the neck between the drop and the interface was studied with high-speed imaging. It was found that the time evolution of the neck at the initial stages of coalescence follows a linear trend, which suggests that the local surfactant concentration at the neck region for this stage of coalescence can be considered quasiconstant in time. This neck expansion can be described by the linear law developed for pure systems when the surfactant concentration at the neck is assumed higher than in the bulk solution. In addition, velocity and vorticity fields were computed inside the coalescing droplet and the bulk homophase using a high-speed shadowgraphy technique. The significant wall effects in the Hele-Shaw cell in the transverse axis cause the two vertical velocity components towards the singularity rupture point, from the drop and from the bulk homophase, to be of the same order of magnitude. This movement together with the neck expansion creates two pairs of counteracting vortices in the drop and in the bulk phase. The neck velocity is the average of the advection velocities of the two counteracting vortex pairs on each side of the neck. The presence of the surfactant slows down the dynamics of the coalescence, affects the propagation direction of the pair of vortices in the bulk phase, and reduces their size faster compared to the system without surfactant
Optical measurements in evolving dispersed pipe flows
Optical laser-based techniques and an extensive data analysis methodology have been developed to acquire flow and separation characteristics of concentrated liquid–liquid dispersions. A helical static mixer was used at the inlet of an acrylic 4 m long horizontal pipe to actuate the dispersed flows at low mixture velocities. The organic (913 kg m−3, 0.0046 Pa s) and aqueous phases (1146 kg m−3, 0.0084 Pa s) were chosen to have matched refractive indices. Measurements were conducted at 15 and 135 equivalent pipe diameters downstream the inlet. Planar laser induced fluorescence (PLIF) measurements illustrated the flow structures and provided the local in-situ holdup profiles. It was found that along the pipe the drops segregate and in some cases coalesce either with other drops or with the corresponding continuous phase. A multi-level threshold algorithm was developed to measure the drop sizes from the PLIF images. The velocity profiles in the aqueous phase were measured with particle image velocimetry (PIV), while the settling velocities of the organic dispersed drops were acquired with particle tracking velocimetry (PTV). It was also possible to capture coalescence events of a drop with an interface over time and to acquire the instantaneous velocity and vorticity fields in the coalescing drop
A combined experimental and computational study of the flow characteristics in a Type B aortic dissection: effect of primary and secondary tear size
Aortic dissection is related to the separation of the tunica intima from the aortic wall, which can cause blood to flow through the newly formed lumen, thereby further damaging the torn vessel. This type of pathology is the most common catastrophic event that affects the aorta and is associated with complications such as malperfusion. In this work, an idealised, simplified geometric model of Type B aortic dissection is investigated experimentally using particle image velocimetry (PIV) and numerically using computational fluid dynamic (CFD) simulations. The flow characteristics through the true and false lumina are investigated parametrically over a range of tear sizes. Specifically, four different tear sizes and size ratios are considered, each representing a different dissection case or stage, and the experimental and numerical results of the flow-rate profiles through the two lumina in each case, along with the phase-averaged velocity vector maps at mid-acceleration, mid-deceleration, relaminarisation and peak systole, and their corresponding velocity profiles are compared. The experimental and numerical results are in good qualitative as well as quantitative agreement. The flow characteristics found here provide insight into the importance of the re-entry tear. We observe that an increase in the re-entry tear size increases considerably the flow rate in the false lumen, decreases significantly the wall shear stress (WSS) and decreases the pressure difference between the false and the true lumen. On the contrary, an increase in the entry tear, increases the flow rate through the false lumen, increases slightly the WSS and increases the pressure difference between the false and the true lumen. These are crucial findings that can help interpret medical diagnosis and accelerate prevention and treatment, especially in high-risk patients
Surfactant effects on the coalescence of a drop in a Hele-Shaw cell
In this work the coalescence of an aqueous drop with a flat aqueous-organic interface was investigated in a thin gap Hele-Shaw cell. Different concentrations of a nonionic surfactant (Span 80) dissolved in the organic phase were studied. We present experimental results on the velocity field inside a coalescing droplet in the presence of surfactants. The evolution of the neck between the drop and the interface was studied with high-speed imaging. It was found that the time evolution of the neck at the initial stages of coalescence follows a linear trend, which suggests that the local surfactant concentration at the neck region for this stage of coalescence can be considered quasiconstant in time. This neck expansion can be described by the linear law developed for pure systems when the surfactant concentration at the neck is assumed higher than in the bulk solution. In addition, velocity and vorticity fields were computed inside the coalescing droplet and the bulk homophase using a high-speed shadowgraphy technique. The significant wall effects in the Hele-Shaw cell in the transverse axis cause the two vertical velocity components towards the singularity rupture point, from the drop and from the bulk homophase, to be of the same order of magnitude. This movement together with the neck expansion creates two pairs of counteracting vortices in the drop and in the bulk phase. The neck velocity is the average of the advection velocities of the two counteracting vortex pairs on each side of the neck. The presence of the surfactant slows down the dynamics of the coalescence, affects the propagation direction of the pair of vortices in the bulk phase, and reduces their size faster compared to the system without surfactant
Simultaneous laser- and infrared-based measurements of the life cycle of a vapour bubble during pool boiling
Nucleate boiling is one of the most effective heat removal modes and has found use in a wide range of cooling applications, from the scale of state-of-the-art densely packed integrated circuits to the majority of current nuclear reactors. While a substantial amount of research has been performed over the years on both pool and flow boiling, this has predominantly focused on qualitative visualisation, often high-speed, aimed at observing the complex and multiphase transport phenomena involved in nucleate boiling, and the development of empirical methods to try to quantify global quantities of interest, such as heat transfer coefficients and pressure drops. In this work, simultaneous laser-based diagnostic and infrared techniques are developed to obtain detailed spatio-temporally-resolved measurements of temperature and velocity fields for single-bubble nucleate boiling. The results show the intrinsic coupled nature of the flow and thermal fields and provide insight into the interaction of these phenomena
Simultaneous laser-induced fluorescence, particle image velocimetry and infrared thermography for the investigation of the flow and heat transfer characteristics of nucleating vapour bubbles
Boiling is an effective heat removal process, used for heat exchange and thermal management purposes in many technological applications, from the scale of microelectronic devices to nuclear reactors. However, the physical mechanisms involved in this process are not fully understood yet due to the complexity that arises from the many interacting underlying sub-processes involved in the nucleation, growth and detachment of bubbles that occur during the process. Here, we present an advanced methodology based on combined, synchronized high-speed infrared (IR) thermometry, ratiometric two-colour laser-induced fluorescence (2cLIF) and particle image velocimetry (PIV), along with sample results of an experimental investigation conducted in deionized water, aimed at elucidating the mechanisms involved in the bubble lifecycle. IR thermometry is used to measure the time-dependent 2-D temperature and heat flux distributions over a boiling surface, and 2cLIF is used to measure the time-dependent temperature-field in a vertical plane, in the liquid phase around developing bubbles. Furthermore, PIV is used to measure the velocity fields around the bubbles, in the same plane as 2cLIF. The investigation reveals and allows us to quantify fundamental heat transfer aspects such as the contribution of triple contact line evaporation to the bubble growth process, the dynamics of the near-wall superheated liquid layer, the mixing effect produced by bubble growth and departure, convection effects around the bubble, and quenching heat transfer. Specifically, we observe that, in our experiment, with slowly growing bubbles, the microlayer does not form, and the evaporation at the solid-liquid-vapour contact line contributes to approximately one third of the total heat transferred to the bubble. We also observed that the fluid that rewets the dry spot at the bubble base, as the bubble departs from the boiling surface, comes from the near-wall superheated thermal boundary layer adjacent to the bubble, i.e., it is warmer than the fluid in the bulk. We confirm this finding by modelling this quenching heat transfer phase as a transient conduction process
Autoignition of a liquid n-heptane jet injected into a confined turbulent hot co-flow
Alternatives to conventional combustion engines, such as gasoline direct injection engines, homogeneous charge compression injection engines and dual-fuel turbines, promise improved fuel efficiency and reduced emissions. The present study of liquid-fuel autoignition in turbulent flows explores the underlying phenomena in these applications towards next-generation combustors. Experiments have been performed on the autoignition of continuous liquid n-heptane jets injected axisymmetrically into confined turbulent coflows of preheated air. Jet atomisation was characterised using high-speed imaging, and autoignition locations and corresponding delay times were recorded for various bulk air temperatures and velocities. Two turbulence-generating plates with different perforation sizes were used to investigate the role of turbulence in affecting the phenomena under investigation. Smaller droplets formed in flows with lower turbulence intensities and larger integral lengthscales. The autoignition length increased and delay time decreased with increasing bulk air velocity, the latter being contrary to results from pre-vaporized n-heptane autoignition in an identical apparatus