53 research outputs found

    Speed breeding for multiple quantitative traits in durum wheat

    Get PDF
    Plant breeding requires numerous generations to be cycled and evaluated before an improved cultivar is released. This lengthy process is required to introduce and test multiple traits of interest. However, a technology for rapid generation advance named 'speed breeding' was successfully deployed in bread wheat (Triticum aestivum L.) to achieve six generations per year while imposing phenotypic selection for foliar disease resistance and grain dormancy. Here, for the first time the deployment of this methodology is presented in durum wheat (Triticum durum Desf.) by integrating selection for key traits, including above and below ground traits on the same set of plants. This involved phenotyping for seminal root angle (RA), seminal root number (RN), tolerance to crown rot (CR), resistance to leaf rust (LR) and plant height (PH). In durum wheat, these traits are desirable in environments where yield is limited by in-season rainfall with the occurrence of CR and epidemics of LR. To evaluate this multi-trait screening approach, we applied selection to a large segregating F2 population (n = 1000) derived from a bi-parental cross (Outrob4/Caparoi). A weighted selection index (SI) was developed and applied. The gain for each trait was determined by evaluating F3 progeny derived from 100 'selected' and 100 'unselected' F2 individuals.Transgressive segregation was observed for all assayed traits in the Outrob4/Caparoi F2 population. Application of the SI successfully shifted the population mean for four traits, as determined by a significant mean difference between 'selected' and 'unselected' F3 families for CR tolerance, LR resistance, RA and RN. No significant shift for PH was observed.The novel multi-trait phenotyping method presents a useful tool for rapid selection of early filial generations or for the characterization of fixed lines out-of-season. Further, it offers efficient use of resources by assaying multiple traits on the same set of plants. Results suggest that when performed in parallel with speed breeding in early generations, selection will enrich recombinant inbred lines with desirable alleles and will reduce the length and number of years required to combine these traits in elite breeding populations and therefore cultivars.Samir Alahmad, Eric Dinglasan, Kung Ming Leung, Adnan Riaz, Nora Derbal, Kai P. Voss-Fels, Jason A. Able, Filippo M. Bassi, Jack Christopher and Lee T. Hicke

    Mining the Vavilov wheat diversity panel for new sources of adult plant resistance to stripe rust

    Get PDF
    Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci

    A major root architecture QTL responding to water limitation in durum wheat

    Get PDF
    The optimal root system architecture (RSA) of a crop is context dependent and critical for efficient resource capture in the soil. Narrow root growth angle promoting deeper root growth is often associated with improved access to water and nutrients in deep soils during terminal drought. RSA, therefore is a drought-adaptive trait that could minimize yield losses in regions with limited rainfall. Here, GWAS for seminal root angle (SRA) identified seven marker-trait associations clustered on chromosome 6A, representing a major quantitative trait locus (qSRA-6A) which also displayed high levels of pairwise LD (r 2 = 0.67). Subsequent haplotype analysis revealed significant differences between major groups. Candidate gene analysis revealed loci related to gravitropism, polar growth and hormonal signaling. No differences were observed for root biomass between lines carrying hap1 and hap2 for qSRA-6A, highlighting the opportunity to perform marker-assisted selection for the qSRA-6A locus and directly select for wide or narrow RSA, without influencing root biomass. Our study revealed that the genetic predisposition for deep rooting was best expressed under water-limitation, yet the root system displayed plasticity producing root growth in response to water availability in upper soil layers. We discuss the potential to deploy root architectural traits in cultivars to enhance yield stability in environments that experience limited rainfall.Samir Alahmad, Khaoula El Hassouni, Filippo M. Bassi, Eric Dinglasan, Chvan Youssef, Georgia Quarry, Alpaslan Aksoy, Elisabetta Mazzucotelli, Angéla Juhåsz, Jason A. Able, Jack Christopher, Kai P. Voss-Fels and Lee T. Hicke

    Statement on the risks for public health related to a possible increase of the maximum level of deoxynivalenol for certain semi-processed cereal products

    Get PDF
    The European Food Safety Authority (EFSA) was asked to deliver a scientific opinion on the risks for public health related to a possible increase of the maximum level (ML) of deoxynivalenol (DON) for certain semi-processed cereal products from 750 ”g/kg to 1000 ”g/kg. For this statement, EFSA relied on existing occurrence data on DON in food collected between 2007 and 2012 and reported by 21 European countries. Due to the lack of appropriate occurrence data from pre-market monitoring, the impact of increasing the ML was estimated using a simulation approach, resulting in an expected increase in mean levels of the respective food products by a factor of 1.14-1.16. Based on median chronic exposure in several age classes, the percentage of consumers exceeding the group provisional maximum tolerable daily intake (PMTDI) of 1 Όg/kg body weight (b.w.) for the sum of DON and its 3- and 15-acetyl-derivatives, established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 2010, is approximately 2-fold higher with the suggested increased ML than with the current ML. Several acute exposure scenarios resulted in exceedance of the group acute reference dose (ARfD) of 8 ”g/kg b.w. established by JECFA with up to 25.9 % of the consumption days above the group ARfD. The EFSA Scientific Panel on Contaminants in the Food Chain notes that the group health based guidance values (HBGVs) include 3-Ac-DON and 15-Ac-DON. The exposure from the acetyl-derivatives has not been covered in this statement, since the acetyl-derivatives are not included in the current or suggested increased ML and because only few occurrence data are available. An increase of the DON ML can be expected to be associated with an increase of the levels of DON and Ac-DONs, and can therefore increase the exposure and consequently the exceedances of the group HBGVs

    Broad neutralization of SARS-related viruses by human monoclonal antibodies

    Get PDF
    Broadly protective vaccines against known and preemergent human coronaviruses (HCoVs) are urgently needed. To gain a deeper understanding of cross-neutralizing antibody responses, we mined the memory B cell repertoire of a convalescent severe acute respiratory syndrome (SARS) donor and identified 200 SARS coronavirus 2 (SARS-CoV-2) binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the non-neutralizing antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of preexisting memory B cells elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a target for the rational design of pan-sarbecovirus vaccines

    Impact of food processing and detoxification treatments on mycotoxin contamination

    Get PDF

    Linkage drag constrains the roots of modern wheat

    No full text

    Overcoming polyploidy pitfalls: a user guide for effective SNP conversion into KASP markers in wheat

    No full text
    Key message: Conversion of SNP chip assays into locus-specific KASP markers requires adapted strategies in polyploid species with high genome homeology. Procedures are exemplified by QTL-associated SNPs in hexaploid wheat. Abstract: Kompetitive allele-specific PCR (KASP) markers are commonly used in marker-assisted commercial plant breeding due to their cost-effectiveness and throughput for high sample volumes. However, conversion of trait-linked SNP markers from array-based SNP detection technologies into KASP markers is particularly challenging in polyploid crop species, due to the presence of highly similar homeologous and paralogous genome sequences. We evaluated strategies and identified key requirements for successful conversion of Illumina Infinium assays from the wheat 90\ua0K SNP array into robust locus-specific KASP markers. Numerous examples showed that commonly used software for semiautomated KASP primer design frequently fails to achieve locus-specificity of KASP assays in wheat. Instead, alignment of SNP probes with multiple reference genomes and Sanger sequencing of relevant genotypes, followed by visual KASP primer placement, was critical for locus-specificity. To identify KASP assays resulting in false calling of heterozygous individuals, validation of KASP assays using extended reference genotype sets including heterozygous genotypes is strongly advised for polyploid crop species. Applying this strategy, we developed highly reproducible, stable KASP assays that are predictive for root biomass QTL haplotypes from highly homoeologous wheat chromosome regions. Due to their locus-specificity, these assays predicted root biomass considerably better than the original trait-associated markers from the Illumina array
    • 

    corecore