6 research outputs found

    The Contribution of Phospholipase A2 and Metalloproteinases to the Synergistic Action of Viper Venom on the Bioenergetic Profile of Vero Cells

    No full text
    Increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the biological effects of snake venoms. However, the complexity of animal venoms and the extreme synergy of the venom components during envenomation calls for critical review and analysis. The epithelium is a primary target for injected viper venom’s toxic substances, and therefore, is a focus in modern toxinology. We used the Vero epithelial cell line as a model to compare the actions of a crude Macrovipera lebetina obtusa (Levantine viper) venom with the actions of the same venom with two key enzymatic components inhibited (specifically, phospholipase A2 (PLA2) and metalloproteinases) in the bioenergetic cellular response, i.e., oxygen uptake and reactive oxygen species generation. In addition to the rate of free-radical oxidation and lipid peroxidation, we measured real-time mitochondrial respiration (based on the oxygen consumption rate) and glycolysis (based on the extracellular acidification rate) using a Seahorse analyzer. Our data show that viper venom drives an increase in both glycolysis and respiration in Vero cells, while the blockage of PLA2 or/and metalloproteinases affects only the rates of the oxidative phosphorylation. PLA2-blocking in venom also increases cytotoxic activity and the overproduction of reactive oxygen species. These data show that certain components of the venom may have a different effect within the venom cocktail other than the purified enzymes due to the synergy of the venom components

    The Effect of Insulin Feedback on Closed Loop Glucose Control

    No full text
    Closed-loop insulin delivery in individuals with type 1 diabetes improves nighttime glucose control, but the meal response needs to be improved

    Effect of Pramlintide on Prandial Glycemic Excursions During Closed-Loop Control in Adolescents and Young Adults With Type 1 Diabetes

    Get PDF
    ObjectiveEven under closed-loop (CL) conditions, meal-related blood glucose (BG) excursions frequently exceed target levels as a result of delays in absorption of insulin from the subcutaneous site of infusion. We hypothesized that delaying gastric emptying with preprandial injections of pramlintide would improve postprandial glycemia by allowing a better match between carbohydrate and insulin absorptions.Research design and methodsEight subjects (4 female; age, 15-28 years; A1C, 7.5 ± 0.7%) were studied for 48 h on a CL insulin-delivery system with a proportional integral derivative algorithm with insulin feedback: 24 h on CL control alone (CL) and 24 h on CL control plus 30-μg premeal injections of pramlintide (CLP). Target glucose was set at 120 mg/dL; timing and contents of meals were identical on both study days. No premeal manual boluses were given. Differences in reference BG excursions, defined as the incremental glucose rise from premeal to peak, were compared between conditions for each meal.ResultsCLP was associated with overall delayed time to peak BG (2.5 ± 0.9 vs. 1.5 ± 0.5 h; P < 0.0001) and reduced magnitude of glycemic excursion (88 ± 42 vs. 113 ± 32 mg/dL; P = 0.006) compared with CL alone. Pramlintide effects on glycemic excursions were particularly evident at lunch and dinner, in association with higher premeal insulin concentrations at those mealtimes.ConclusionsPramlintide delayed the time to peak postprandial BG and reduced the magnitude of prandial BG excursions. Beneficial effects of pramlintide on CL may in part be related to higher premeal insulin levels at lunch and dinner compared with breakfast
    corecore