3 research outputs found

    The effects of sulfated secondary bile acids on intestinal barrier function and immune response in an inflammatory in vitro human intestinal model

    No full text
    Dysbiosis-related perturbations in bile acid (BA) metabolism were observed in inflammatory bowel disease (IBD) patients, which was characterized by increased levels of sulfated BAs at the expense of secondary BAs. However, the exact effects of sulfated BAs on the etiology of IBD are not investigated yet. Therefore, we aimed to investigate the effects of sulfated deoxycholic acid (DCA), sulfated lithocholic acid (LCA) and their unsulfated forms on intestinal barrier function and immune response. To this end, we first established a novel in vitro human intestinal model to mimic chronic intestinal inflammation as seen during IBD. This model consisted of a co-culture of Caco-2 and HT29-MTX-E12 cells grown on a semi-wet interface with mechanical stimulation to represent the mucus layer. A pro-inflammatory environment was created by combining the co-culture with LPS-activated dendritic cells (DCs) in the basolateral compartment. The presence of activated DCs caused a decrease in transepithelial electrical resistance (TEER), which was slightly restored by LCA and sulfated DCA. The expression of genes related to intestinal epithelial integrity and the mucus layer were slightly, but not significantly increased. These results imply that sulfated BAs have a minor effect on intestinal barrier function in Caco-2 and HT29-MTX-E12 cells. When exposed directly to DCs, our results point towards anti-inflammatory effects of secondary BAs, but to a minor extent for sulfated secondary BAs. Future research should focus on the importance of proper transformation of BAs by bacterial enzymes and the potential involvement of BA dysmetabolism in IBD progression

    Effect of vegan fecal microbiota transplantation on carnitine- and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome

    No full text
    Background--Intestinal microbiota have been found to be linked to cardiovascular disease via conversion of the dietary compounds choline and carnitine to the atherogenic metabolite TMAO (trimethylamine-N-oxide). Specifically, a vegan diet was associated with decreased plasma TMAO levels and nearly absent TMAO production on carnitine challenge. Methods and Results--We performed a double-blind randomized controlled pilot study in which 20 male metabolic syndrome patients were randomized to single lean vegan-donor or autologous fecal microbiota transplantation. At baseline and 2 weeks thereafter, we determined the ability to produce TMAO from d6-choline and d3-carnitine (eg, labeled and unlabeled TMAO in plasma and 24-hour urine after oral ingestion of 250 mg of both isotope-labeled precursor nutrients), and fecal samples were collected for analysis of microbiota composition. 18F-fluorodeoxyglucose positron emission tomography/computed tomography scans of the abdominal aorta, as well as ex vivo peripheral blood mononuclear cell cytokine production assays, were performed. At baseline, fecal microbiota composition differed significantly between vegans and metabolic syndrome patients. With vegan-donor fecal microbiota transplantation, intestinal microbiota composition in metabolic syndrome patients, as monitored by global fecal microbial community structure, changed toward a vegan profile in some of the patients; however, no functional effects from vegan-donor fecal microbiota transplantation were seen on TMAO production, abdominal aortic 18Ffluorodeoxyglucose uptake, or ex vivo cytokine production from peripheral blood mononuclear cells. Conclusions--Single lean vegan-donor fecal microbiota transplantation in metabolic syndrome patients resulted in detectable changes in intestinal microbiota composition but failed to elicit changes in TMAO production capacity or parameters related to vascular inflammation

    The 2000HIV study: Design, multi-omics methods and participant characteristics

    No full text
    Background: Even during long-term combination antiretroviral therapy (cART), people living with HIV (PLHIV) have a dysregulated immune system, characterized by persistent immune activation, accelerated immune ageing and increased risk of non-AIDS comorbidities. A multi-omics approach is applied to a large cohort of PLHIV to understand pathways underlying these dysregulations in order to identify new biomarkers and novel genetically validated therapeutic drugs targets. Methods: The 2000HIV study is a prospective longitudinal cohort study of PLHIV on cART. In addition, untreated HIV spontaneous controllers were recruited. In-depth multi-omics characterization will be performed, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and metagenomics, functional immunological assays and extensive immunophenotyping. Furthermore, the latent viral reservoir will be assessed through cell associated HIV-1 RNA and DNA, and full-length individual proviral sequencing on a subset. Clinical measurements include an ECG, carotid intima-media thickness and plaque measurement, hepatic steatosis and fibrosis measurement as well as psychological symptoms and recreational drug questionnaires. Additionally, considering the developing pandemic, COVID-19 history and vaccination was recorded. Participants return for a two-year follow-up visit. The 2000HIV study consists of a discovery and validation cohort collected at separate sites to immediately validate any finding in an independent cohort. Results: Overall, 1895 PLHIV from four sites were included for analysis, 1559 in the discovery and 336 in the validation cohort. The study population was representative of a Western European HIV population, including 288 (15.2%) cis-women, 463 (24.4%) non-whites, and 1360 (71.8%) MSM (Men who have Sex with Men). Extreme phenotypes included 114 spontaneous controllers, 81 rapid progressors and 162 immunological non-responders. According to the Framingham score 321 (16.9%) had a cardiovascular risk of >20% in the next 10 years. COVID-19 infection was documented in 234 (12.3%) participants and 474 (25.0%) individuals had received a COVID-19 vaccine. Conclusion: The 2000HIV study established a cohort of 1895 PLHIV that employs multi-omics to discover new biological pathways and biomarkers to unravel non-AIDS comorbidities, extreme phenotypes and the latent viral reservoir that impact the health of PLHIV. The ultimate goal is to contribute to a more personalized approach to the best standard of care and a potential cure for PLHIV
    corecore