58 research outputs found

    Design of a continuous reactor for immobilized biocatalysts

    No full text
    Applied Science

    Computer simulatie van op druk belaste stalen kolommen

    No full text
    Civil Engineering and GeosciencesStructural Engineerin

    Damage stability requirements for autonomous ships based on equivalent safety

    No full text
    In recent years, a significant amount of research has been conducted on autonomous ships. Since it is assumed that these ships will sail with a significantly reduced crew or even without people on board, the design of the ship needs reconsideration. The absence of people on board and the associated safety measures could result in a more efficient design, but amendments in the existing regulatory framework will be needed. In this article, we will focus on potential changes in the Convention for Safety Of Life At Sea (SOLAS) and in particular on the Required Subdivision Index. The index gives a requirement for the allowed probability of sinking when a ship is damaged due to collision. The evaluation is performed by using the principle of equivalent safety, which will ensure that unmanned ships will be at least as safe as manned ships. If the crew is no longer present, the consequences of an incident will be less severe, since the probability of casualties is no longer present. Consequently, a lower subdivision index might be accepted for unmanned autonomous ships. In this article, the damage stability-related level of risk of a manned ship will be derived by means of a risk analysis. Thereafter, the subdivision index for unmanned ships, which ensures an equivalent safety level to similar manned ships, is established for three individual ships. The assessment shows that a reduction in the subdivision index is allowed for unmanned ships and that the reduction will be largest for smaller ships.Ship Design, Production and Operation

    Iterative trace reconstruction of aliased radio-frequency data obtained using harmonic imaging: A feasibility study

    No full text
    It is critical to use a proper spatial sampling, otherwise images suffer from grating lobes. However, the cost of a medical ultrasound scanner is strongly related to the channel count of the receive electronics. This has led to channel reduction using multiplexing or in-probe pre-beamforming methods at the cost of image quality or frame rate. An alternative is to reduce the receive channel count and reconstruct the non-aliased data from spatially aliased data. Last year we reported on a wavenumber frequency domain mapping based iterative trace reconstruction method developed for fundamental imaging. However, harmonic imaging is often used in medical imaging to further improve the image quality. As the reconstruction method assumes linearity, it is not a-priori clear whether the reconstruction will work satisfactory in combination with harmonic imaging. Here, the feasibility of using the method for harmonic imaging is investigated using in-vivo linear array data. The reconstruction algorithm operates by iteratively focusing and defocusing of the data using an imaging algorithm and uses intermittent thresholding to suppress the aliasing artifacts in the imaging domain. Properly sampled plane wave transmission datasets were recorded of the right common carotid artery of a healthy volunteer using a linear array transducer attached to a research system. The reconstruction technique significantly improved the image quality of all aliased datasets for both the fundamental and second harmonic imaging modalities. In fact, the reconstruction quality was slightly better for the second harmonic imaging case.ImPhys/Acoustical Wavefield Imagin

    Fundamental modeling of wave propagation in temporally relaxing media with applications to cardiac shear wave elastography

    Get PDF
    Shear wave elastography (SWE) might allow non-invasive assessment of cardiac stiffness by relating shear wave propagation speed to material properties. However, after aortic valve closure, when natural shear waves occur in the septal wall, the stiffness of the muscle decreases significantly, and the effects of such temporal variation of medium properties on shear wave propagation have not been investigated yet. The goal of this work is to fundamentally investigate these effects. To this aim, qualitative results were first obtained experimentally using a mechanical setup, and were then combined with quantitative results from finite difference simulations. The results show that the amplitude and period of the waves increase during propagation, proportional to the relaxation of the medium, and that reflected waves can originate from the temporal stiffness variation. These general results, applied to literature data on cardiac stiffness throughout the heart cycle, predict as a major effect a period increase of 20% in waves propagating during a healthy diastolic phase, whereas only a 10% increase would result from the impaired relaxation of an infarcted heart. Therefore, cardiac relaxation can affect the propagation of waves used for SWE measurements and might even provide direct information on the correct relaxation of a heart.ImPhys/Medical Imagin

    Modelling Lamb waves in the septal wall of the heart

    No full text
    Shear Wave Elastography (SWE) has been proposed to investigate cardiac health by non-invasively monitoring tissue stiffness. Previous work has shown that the plate-like geometry of the Interventricular Septum (IVS) may result in a dispersion similar to Lamb waves, complicating the link between shear wave speed and cardiac stiffness. However, the IVS is not a simple plate, e.g., its thickness tapers across its length. We have used 2-D Finite Element simulations to investigate the effects of tapering on Lamb waves. The model consists of an elastic slab immersed in water, with a thickness decreasing smoothly in space from 9 to 3 mm. Pulses with low (0–80 Hz) and high (0–700 Hz) frequency contents were used to excite natural and acoustic radiation force induced waves. The results show that, at the lower frequencies, propagation speed can decrease during propagation by ~20% due to the thickness reduction, producing a nonlinear space-time relation from which multiple speed values can be extracted. At higher frequencies, the main observation is a dependence of the dispersion behavior on the shape of the tapering (e.g., linear, concave, or convex). These results suggest that septal geometry is likely to play a role in deriving cardiac stiffness from propagation speed measurements.ImPhys/Acoustical Wavefield Imagin

    Zorzut Rodolfo (Dolfo), insegnante, folclorista e scrittore

    No full text
    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the uperharmonics in nondestructive mode.ImPhys/Imaging PhysicsApplied Science

    Frequency Domain Two-Stage Beamforming for Phased Array Imaging Using the Fast Hankel Transform

    No full text
    The huge amount of data that needs to be transferred between probe and imaging system becomes a major issue when the data transfer capacity is limited, e.g. in handheld systems, wireless probes and miniaturized probes. The amount of data can be significantly reduced by using two-stage beamforming. The first stage consists of a fixed focus algorithm that compresses channel data to scanline data. This can be done by integrated electronics in the handle. In the second stage the scanline data is further beamformed in the imaging system to obtain images that are synthetically focused at all depths. Here we present a wave equation two-stage beamforming method for phased array imaging that is computationally efficient and outperforms PSASB, a time-of-flight alternative, in terms of lateral resolution and contrast-to-noise ratio.Accepted Author ManuscriptImPhys/Acoustical Wavefield ImagingImPhys/Quantitative Imagin

    Impact of Bit Errors in Digitized RF Data on Ultrasound Image Quality

    No full text
    This article quantitatively analyzes the impact of bit errors in digitized RF data on ultrasound image quality. The quality of B-mode images in both linear array and phased array imaging is evaluated by means of three objective image quality metrics: peak signal-to-noise ratio, structural similarity index, and contrast-to-noise ratio, when bit errors are introduced to the RF data with different bit-error rates (BERs). The effectiveness of coding schemes for forward error detection and correction to improve the image quality is also studied. The results show that ultrasound imaging is inherently resilient to high BER. The image quality suffers unnoticeable degradation for BER lower than 1E-6. Simple 1-bit parity coding with 9% added redundancy helps to retain similar image quality for BER up to 1E-4, and Hamming coding with 33.3% added redundancy allows the BER to increase to 1E-3. These results can serve as a guideline in the datalink design for ultrasound probes with in-probe receive digitization. With much more relaxed BER requirements than in typical datalinks, the design can be optimized by allowing fewer cables with higher data rate per cable or lower power consumption with the same cable count.Electronic InstrumentationImPhys/Acoustical Wavefield ImagingImPhys/Medical Imagin
    corecore