11 research outputs found

    Molecular Cytogenetics and Cytogenomics of Brain Diseases

    Get PDF
    Molecular cytogenetics is a promising field of biomedical research that has recently revolutionized our thinking on genome structure and behavior. This is in part due to discoveries of human genomic variations and their contribution to biodiversity and disease. Since these studies were primarily targeted at variation of the genome structure, it appears apposite to cover them by molecular cytogenomics. Human brain diseases, which encompass pathogenic conditions from severe neurodegenerative diseases and major psychiatric disorders to brain tumors, are a heavy burden for the patients and their relatives. It has been suggested that most of them, if not all, are of genetic nature and several recent studies have supported the hypothesis assuming them to be associated with genomic instabilities (i.e. single-gene mutations, gross and subtle chromosome imbalances, aneuploidy). The present review is focused on the intriguing relationship between genomic instability and human brain diseases. Looking through the data, we were able to conclude that both interindividual and intercellular genomic variations could be pathogenic representing, therefore, a possible mechanism for human brain malfunctioning. Nevertheless, there are still numerous gaps in our knowledge concerning the link between genomic variations and brain diseases, which, hopefully, will be filled by forthcoming studies. In this light, the present review considers perspectives of this dynamically developing field of neurogenetics and genomics

    Fluorescence intensity profiles of in situ hybridization signals depict genome architecture within human interphase nuclei

    Get PDF
    An approach towards construction of two-dimensional (2D) and three-dimensional (3D) profiles of interphase chromatin architecture by quantification of fluorescence in situ hybridization (FISH) signal intensity is proposed. The technique was applied for analysis of signal intensity and distribution within interphase nuclei of somatic cells in different human tissues. Whole genomic DNA, fraction of repeated DNA sequences (Cot1) and cloned satellite DNA were used as probes for FISH. The 2D and 3D fluorescence intensity profiles were able to depict FISH signal associations and somatic chromosome pairing. Furthermore, it allowed the detection of replicating signal patterns, the assessment of hybridization efficiency, and comparative analysis of DNA content variation of specific heterochromatic chromosomal regions. The 3D fluorescence intensity profiles allowed the analysis of intensity gradient within the signal volume. An approach was found applicable for determination of assembly of different types of DNA sequences, including classical satellite and alphoid DNA, gene-rich (G-negative bands) and gene-poor (G-positive bands) chromosomal regions as well as for assessment of chromatin architecture and targeted DNA sequence distribution within interphase nuclei. We conclude the approach to be a powerful additional tool for analysis of interphase genome architecture and chromosome behavior in the nucleus of human somatic cells.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²ΠΈ Π΄Π²ΠΎΠΌΡ–Ρ€Π½ΠΈΡ… (2D) Ρ‚Π° Ρ‚Ρ€ΠΈΠΌΡ–Ρ€Π½ΠΈΡ… (3D) ΠΏΡ€ΠΎΡ„Ρ–Π»Ρ–Π² інтСнсивності сигналів флуорСсцСнтної Π³Ρ–Π±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†Ρ–Ρ— in situ (FISH), Ρ‰ΠΎ заснований Π½Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½Ρ–ΠΉ FISH. НавСдСна ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π±ΡƒΠ»Π° використана для Π°Π½Π°Π»Ρ–Π·Ρƒ Ρ€ΠΎΠ·Ρ‚Π°ΡˆΡƒΠ²Π°Π½Π½Ρ Ρ‚Π° Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ сигналів Π² Ρ–Π½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½ΠΈΡ… ядрах ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ Ρ€Ρ–Π·Π½ΠΈΡ… соматичних Ρ‚ΠΊΠ°Π½ΠΈΠ½ людини. Використання 2D ΠΏΡ€ΠΎΡ„Ρ–Π»Ρ–Π² інтСнсивності продСмонструвало ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ визначСння Π»ΠΎΠΊΠ°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— FISH-сигналів. Π‘Ρ–Π»ΡŒΡˆ Ρ‚ΠΎΠ³ΠΎ, Π΄Π°Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ² Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΡƒΠ²Π°Ρ‚ΠΈ Ρ€Π΅ΠΏΠ»Ρ–ΠΊΠΎΠ²Π°Π½Ρ– сигнали, Π΄Π°Ρ‚ΠΈ ΠΎΡ†Ρ–Π½ΠΊΡƒ СфСктивності Π³Ρ–Π±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†Ρ–Ρ— Ρ‚Π° провСсти ΠΏΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· Π²Π°Ρ€Ρ–Π°Ρ†Ρ–Ρ— вмісту Π”ΠΠš спСцифічних ділянок хромосом. ΠŸΠΎΠ±ΡƒΠ΄ΠΎΠ²Π° 3D ΠΏΡ€ΠΎΡ„Ρ–Π»Ρ–Π² ΠΏΠΎΠΊΠ°Π·Π°Π»Π° Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π» інтСнсивності Ρƒ ΠΌΠ΅ΠΆΠ°Ρ… ΠΏΠ»ΠΎΡ‰Ρ– сигналу. Використання Ρ†Ρ–Ρ”Ρ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π²ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ зосСрСдТСння Ρ€Ρ–Π·Π½ΠΈΡ… Ρ‚ΠΈΠΏΡ–Π² послідовностСй Π”ΠΠš: класична сатСлітна Ρ‚Π° Π°Π»ΡŒΡ„ΠΎΡ—Π΄Π½Π° Π”ΠΠš; гСнонасичСні (G-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ– полоси) Ρ– гСнонСнасичСні (G-Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ– полоси) ділянки хромосом. ΠšΡ€Ρ–ΠΌ Ρ†ΡŒΠΎΠ³ΠΎ, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π½Π°Π΄Π°Π»Π° ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ ΠΎΡ†Ρ–Π½ΠΈΡ‚ΠΈ Ρ€ΠΎΠ·Ρ‚Π°ΡˆΡƒΠ²Π°Π½Π½Ρ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² Ρ–Π½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½ΠΈΡ… ядрах як ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΎΠ²Π°Π½ΠΈΡ…, Ρ‚Π°ΠΊ Ρ– Π½Π΅ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΎΠ²Π°Π½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½. Π—Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ висновок, Ρ‰ΠΎ Π½Π°Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Ρ” Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡŽ Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ для вивчСння ядСрної ΠΎΡ€Π³Π°Π½Ρ–Π·Π°Ρ†Ρ–Ρ—, спСцифіки Π²Π°Ρ€Ρ–Π°Ρ†Ρ–Ρ— Ρ‚Π° Ρ€ΠΎΠ·Ρ‚Π°ΡˆΡƒΠ²Π°Π½Π½Ρ послідовностСй Π”ΠΠš Π² Ρ–Π½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½ΠΈΡ… ядрах, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠΈ ядСр ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΡƒΠ²Π°Π½Π½Ρ– хромосомних ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² соматичних ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ людини.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ построСния Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… (2D) ΠΈ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… (3D) ΠΏΡ€ΠΎΡ„ΠΈΠ»Π΅ΠΉ интСнсивности сигналов Ρ„Π»ΡŽΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ in situ (FISH), основанный Π½Π° количСствСнной FISH. Настоящая ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π±Ρ‹Π»Π° использована для Π°Π½Π°Π»ΠΈΠ·Π° располоТСния ΠΈ распрСдСлСния сигналов Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ядрах ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… соматичСских Ρ‚ΠΊΠ°Π½Π΅ΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ИспользованиС 2D ΠΏΡ€ΠΎΡ„ΠΈΠ»Π΅ΠΉ интСнсивности продСмонстрировало Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ опрСдСлСния ΠΊΠΎΠ»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ FISH-сигналов. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΏΠ»ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ сигналы, Π΄Π°Ρ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΡƒ эффСктивности Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ содСрТания Π”ΠΠš спСцифичСских участков хромосом. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ 3D ΠΏΡ€ΠΎΡ„ΠΈΠ»Π΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ распрСдСлСниС интСнсивности Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ сигнала. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ этой ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ сосрСдоточСниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš: классичСская сатСллитная ΠΈ Π°Π»ΡŒΡ„ΠΎΠΈΠ΄Π½Π°Ρ Π”ΠΠš; гСннонасыщСнныС (G-ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ полосы) ΠΈ гСннонСнасыщСнныС (G-ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ полосы) участки хромосом. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π΄Π°Π»Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ располоТСниС Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ядрах ΠΊΠ°ΠΊ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ…, Ρ‚Π°ΠΊ ΠΈ Π½Π΅ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ исслСдования Π±Ρ‹Π» сдСлан Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ являСтся эффСктивной Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ для изучСния ядСрной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ, спСцифики Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ ΠΈ располоТСния ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ядрах, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅- ния ядСр ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠΈ хромосомных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² соматичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    ΠΠ•Π‘Π’ΠΠ‘Π˜Π›Π¬ΠΠžΠ‘Π’Π¬ Π“Π•ΠΠžΠœΠ Π“ΠžΠ›ΠžΠ’ΠΠžΠ“Πž ΠœΠžΠ—Π“Π: Π­Π’Π˜ΠžΠ›ΠžΠ“Π˜Π―, ΠŸΠΠ’ΠžΠ“Π•ΠΠ•Π— И ΠΠžΠ’Π«Π• Π‘Π˜ΠžΠ›ΠžΠ“Π˜Π§Π•Π‘ΠšΠ˜Π• ΠœΠΠ ΠšΠ•Π Π« ПБИΠ₯Π˜Π§Π•Π‘ΠšΠ˜Π₯ Π‘ΠžΠ›Π•Π—ΠΠ•Π™

    Get PDF
    The latest advances in molecular medicine, medical genetics and neurobiology have provided for a new look at processes occurring in cells of the brain and have allowed to discover previously unknown phenomena associated with mental traits and to propose new biomedical direction which include genomics, psychiatry and neurobiology ― brain genomics. The application of modern molecular and cellular technologies of genome analysis in the brain in common psychiatric disorders (autism, schizophrenia and Alzheimer’s disease) has shown that genomic instability is a phathogenetic mechanism of central nervous system abnormalities and plays a role in the brain development. Genomic disbalance alters neural homeostasis leads to cell death and is an important biological marker of psychiatric disorders which determine genomic pathways. These alterations lead to synaptic disfunction and neurodegeneration. In the present review, the main advances of brain genomics and potential application in diagnostic, clinical and therapeutic practice. ПослСдниС достиТСния Π² области молСкулярной ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ‹, мСдицинской Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠΈ ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΏΠΎ-Π½ΠΎΠ²ΠΎΠΌΡƒ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ процСссы, происходящиС Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ Ρ€Π°Π½Π΅Π΅ Π½Π΅ извСстныС Ρ„Π΅Π½ΠΎΠΌΠ΅Π½Ρ‹, связанныС с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ особСнностями психики Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΈ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ Π½ΠΎΠ²ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, возникшСС Π½Π° стыкС Π³Π΅Π½ΠΎΠΌΠΈΠΊΠΈ, психиатрии ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ, ― Π³Π΅Π½ΠΎΠΌΠΈΠΊΡƒ ΠΌΠΎΠ·Π³Π°. ИспользованиС соврСмСнных молСкулярных ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π°Π½Π°Π»ΠΈΠ·Π° Π³Π΅Π½ΠΎΠΌΠ° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΏΡ€ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСнных ΠΈ ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… психичСских заболСваниях (Π°ΡƒΡ‚ΠΈΠ·ΠΌ, ΡˆΠΈΠ·ΠΎΡ„Ρ€Π΅Π½ΠΈΡ ΠΈ болСзнь ΠΠ»ΡŒΡ†Π³Π΅ΠΉΠΌΠ΅Ρ€Π°) ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ гСномная Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ прСдставляСт собой патогСнСтичСский ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ³Ρ€Π°Π΅Ρ‚ Ρ€ΠΎΠ»ΡŒ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π“Π΅Π½Π½Ρ‹ΠΉ (Π³Π΅Π½ΠΎΠΌΠ½Ρ‹ΠΉ) дисбаланс Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ гомСостаз Π½Π΅Ρ€Π²Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, приводя ΠΊ Π΅Π΅ Π³ΠΈΠ±Π΅Π»ΠΈ, Π½ΠΎ ΠΈ являСтся Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ биологичСским ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠΌ психичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Π³Π΅Π½ΠΎΠΌΠ½Ρ‹Π΅ сСти, измСнСния Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… приводят ΠΊ дисфункции синапсов ΠΈΠ»ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ. Π’ настоящСм ΠΎΠ±Π·ΠΎΡ€Π΅ прСдставлСны основныС достиТСния Π³Π΅Π½ΠΎΠΌΠΈΠΊΠΈ ΠΌΠΎΠ·Π³Π° ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ ΠΏΡƒΡ‚ΠΈ ΠΈΡ… использования Π² диагностичСской, клиничСской ΠΈ тСрапСвтичСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅.

    INTEGRATED CLINICAL AND GENETIC APPROACH FOR DIAGNOSIS OF RETT SYNDROME IN CHILDREN

    No full text
    Rett syndrome represents one of the most important neuropsychiatric genetic diseases. It affects generally girls with the incidence 1:10000–1:15000. Mutations in clinked gene mecp2 are considered as the main cause of the disease. The particular patterns of chromosome x replication (type C) are observed in affected females allowing the cytogenetic technique application for the diagnosis. Cytogenetic and molecular genetic studies carried out in the present work allowed us to propose an integrated approach for the diagnosis of this disease. A clinical description, cytogenetic analyses (assessment of an abnormal chromosome X replication type in affected females as well as chromosome complement abnormalities in affected males), molecular cytogenetic assays using DNA probes specific for mecp2 gene region, studying mecp2 mutations, and x chromosome inactivation pattern studies were combined in order to provide the efficient clinical and genetic diagnosis of RTT as well as counseling of family with affected children. The data obtained have shown to increase significantly the efficiency of the diagnosis as well as genetic counseling of families with Rett syndrome affected children.Key words: Rett syndrome, x-chromosome inactivation, mecp2 mutations, replication of chromosome x, children

    Pericentric inversion inv(7)(p11q21.1): report on two cases and genotype-phenotype correlations

    No full text
    We report on two unrelated cases of pericentric inversion 46,XY,inv(7)(p11q21.1) associated with distinct pattern of malformation including mental retardation, development delay, ectrodactyly, facial dismorphism, high arched palate. Additionally, one case was found to be characterized by mesodermal dysplasia. Cytogenetic analysis of the families indicated that one case was a paternally inherited inversion whereas another case was a maternally inherited one. Molecular cytogenetic studies have shown paternal inversion to have a breakpoint within centromeric heterochromatin being the cause of alphoid DNA loss. Maternal inversion was also associated with a breakpoint within centromeric heterochromatin as well as inverted euchromatic chromosome region flanked by two disrupted alphoid DNA blocks.ΠžΠΏΠΈΡΠ°Π½Ρ‹ Π΄Π²Π° нСродствСнных случая пСрицСнтричСской инвСрсии 46,XY,inv(7)(p11q21.1), связанной с умствСнной ΠΎΡ‚ΡΡ‚Π°Π»ΠΎΡΡ‚ΡŒΡŽ, Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ развития, эктродактилиСй, аномалиями Π»ΠΈΡ†Π°, готичСским Π½Π΅Π±ΠΎΠΌ. Помимо этого, Π² ΠΎΠ΄Π½ΠΎΠΌ случаС наблюдали ΠΌΠ΅Π·ΠΎΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ дисплазию. ЦитогСнСтичСский Π°Π½Π°Π»ΠΈΠ· сСмСй ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π² ΠΎΠ΄Π½ΠΎΠΌ случаС инвСрсия ΠΈΠΌΠ΅Π»Π° отцовскоС происхоТдСниС, Π² Π΄Ρ€ΡƒΠ³ΠΎΠΌ – матСринскоС. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ молСкулярно-цитогСнСтичСских исслСдований Π±Ρ‹Π»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° Ρ€Π°Π·Ρ€Ρ‹Π²Π° инвСрсии отцовского происхоТдСния Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π΅ ΠΈ связана с ΠΏΠΎΡ‚Π΅Ρ€Π΅ΠΉ Π°Π»ΡŒΡ„ΠΎΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ инвСрсии матСринского происхоТдСния Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ€Π°Π·Ρ€Ρ‹Π²Π° Ρ‚Π°ΠΊΠΆΠ΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π² Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π΅ ΠΈ эухроматинС участка 7q21–q22, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ²Π΅Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ эухроматиновый участок располоТСн ΠΌΠ΅ΠΆΠ΄Ρƒ двумя пСрСстроСнными Π±Π»ΠΎΠΊΠ°ΠΌΠΈ Π°Π»ΡŒΡ„ΠΎΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš

    Chimerism and multiple numerical chromosome imbalances in a spontaneously aborted fetus

    No full text
    We report on a case of chimerism and multiple abnormalities of chromosomes 21, X and Y in spontaneous abortion specimen. To the best our knowledge the present case is the first documented chimera in a spontaneously aborted fetus. The application of interphase fluorescence in situ hybridization (FISH) using chromosome enumeration and site-specific DNA probes showed trisomy X in 92 nuclei (23 %), tetrasomy X in 100 nuclei (25 %), pentasomy of chromosome X in 40 nuclei (10 %), XXY in 36 nuclei (9 %), XXXXXXYY in 12 nuclei (3 %), XXXXXYYYYY in 8 nuclei (2 %), trisomy 21 and female chromosome complement in 40 nuclei (10 %), normal female chromosome complement in 72 nuclei (18 %) out of 400 nuclei scored. Our experience indicates that the frequency of chimerism coupled with multiple chromosome abnormalities should be no less than 1 : 400 among spontaneous abortions. The difficulties of chimerism identification in fetal tissues are discussed

    Non-disjunction of chromosome 21, alphoid DNA variation, and sociogenetic features of Down syndrome

    No full text
    The analysis of non-disjunction of chromosome 21 and alphoid DNA variation by using cytogenetic and molecular cytogenetic techniques (quantitative fluorescence in situ hybridization) in 74 nuclear families was performed. The establishment of possible correlation between alphoid DNA variation, parental age, environmental effects, and non-disjunction of chromosome 21 was made. The efficiency of techniques applied was found to be 92 % (68 from 74 cases). Maternal non-disjunction was found in 58 cases (86 %) and paternal non-disjunction β€” in 7 cases (10 %). Post-zygotic mitotic non-disjunction was determined in 2 cases (3 %) and one case was associated with Robertsonian translocation 46,XX,der(21;21)(q10;q10),+21. Maternal meiosis I errors were found in 43 cases (64 %) and maternal meiosis II errors β€” in 15 cases (22 %). Paternal meiosis I errors occurred in 2 cases (3 %) and paternal meiosis I errors β€” in 5 cases (7 %). The lack of the correlation between alphoid DNA variation and non-disjunction of chromosome 21 was established. Sociogenetic analysis revealed the association of intensive drug therapy of infectious diseases during the periconceptual period and maternal meiotic non-disjunction of chromosome 21. The correlation between non-disjunction of chromosome 21 and increased parental age as well as exposure to irradiation, alcohol, tobacco, mutagenic substances was not found. The possible relevance of data obtained to the subsequent studies of chromosome 21 non-disjunction is discussed.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· нСрасхоТдСния хромосомы 21 ΠΈ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ Π°Π»ΡŒΡ„ΠΎΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš Π² 74 ядСрных ΡΠ΅ΠΌΡŒΡΡ… с Π΄Π΅Ρ‚ΡŒΠΌΠΈ, ΡΡ‚Ρ€Π°Π΄Π°ΡŽΡ‰ΠΈΠΌΠΈ синдромом Π”Π°ΡƒΠ½Π°, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ цитогСнСтичСских ΠΈ молСкулярно-цитогСнСтичСских (количСствСнная Ρ„Π»ΡŽΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ‚Π½Π°Ρ гибидизация in situ) ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². Помимо этого, Π±Ρ‹Π» Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· коррСляции ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠ΅ΠΉ Π°Π»ΡŒΡ„ΠΎΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš, возрастом Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ, Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды ΠΈ нСрасхоТдСниСм хромосомы 21. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² составила 92 % (68 ΠΈΠ· 74 случаСв). ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ½ΡΠΊΠΎΠ΅ нСрасхоТдСниС Π±Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π² 58 случаях (86 %), отцовскоС β€” Π² 7 случаях (10 %). ΠŸΠΎΡΡ‚Π·ΠΈΠ³ΠΎΡ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ митотичСскоС нСрасхоТдСниС Π±Ρ‹Π»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ Π² 2 случаях (3 %) ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ случаС β€” робСртсоновская транслокация 46,XX,der(21;21)(q10;q10),+21. Ошибки Π² матСринском ΠΌΠ΅ΠΉΠΎΠ·Π΅ I Π±Ρ‹Π»ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Π² 43 случаях (64 %), Π² матСринском ΠΌΠ΅ΠΉΠΎΠ·Π΅ II β€” Π² 15 случаях (22 %). Ошибки Π² отцовском ΠΌΠ΅ΠΉΠΎΠ·Π΅ I Π±Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π² 2 случаях (2 %), Π² отцовском ΠΌΠ΅ΠΉΠΎΠ·Π΅ II β€” Π² 5 случаях (7 %). Π‘Ρ‹Π»ΠΎ установлСно отсутствиС коррСляции ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠ΅ΠΉ Π°Π»ΡŒΡ„ΠΎΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš ΠΈ нСрасхоТдСниСм хромосомы 21. БоциогСнСтичСский Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·Π°Π» Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ коррСляции ΠΌΠ΅ΠΆΠ΄Ρƒ интСнсивной лСкарствСнной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠ΅ΠΉ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π² ΠΏΠ΅Ρ€ΠΈΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΠΈ нСрасхоТдСниСм хромосомы 21 Π² матСринском ΠΌΠ΅ΠΉΠΎΠ·Π΅. Показано Ρ‚Π°ΠΊΠΆΠ΅, Ρ‡Ρ‚ΠΎ нСрасхоТдСниС хромосомы 21 нСльзя ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ достовСрно связанным с большим возрастом Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ, воздСйствиСм Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΈ, ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π»Π΅Π½ΠΈΠ΅ΠΌ алкоголя, ΠΊΡƒΡ€Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π°Π±Π°ΠΊΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ воздСйствиСм химичСских соСдинСний с ΠΌΡƒΡ‚Π°Π³Π΅Π½Π½Ρ‹ΠΌ эффСктом. ΠžΠ±ΡΡƒΠΆΠ΄Π°Π΅Ρ‚ΡΡ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² для ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… исслСдований нСрасхоТдСния хромосомы 21

    Factors Influencing the Success Of Autism Spectrum Disorders Overcoming

    No full text
    No more than 10β€”20% of children with autism, as becoming adults can adapt to a relatively independent life. Despite many publications dedicated to autism, relatively little work has examined the output characteristics and pathomorphosis of psychic and cognitive disorders in people with autism spectrum disorders (ASD). Only few longitudinal studies allow us to represent what happens in later life with people who have ASD. For conducting effective correctional interventions overcomingwith children with ASD there is need to identify predictors of successful overcome of disorders. The basis for the study, conducted by a team of psychologists and neuroscientists, was the assumption that the information about the features of violations of basic neurobiological mechanisms in people with autism spectrum disorders should determine the tactics of assistance. Genetic, neurophysiological and psychological factors, causing more successful overcoming of these disorders in children are revealed

    Complex cytogenetic and molecular-genetic analysis of males with spermatogenesis failure

    No full text
    The chromosomal anomalies, microdeletions of AZF region of Y-chromosome and CFTR gene mutations have been studied among 80 infertile men with idiopathic spermatogenetic failure: 36 (45 %) patients with aspermia, 19 (24 %) patients with azoospermia and 25 (31 %) patients with severe oligoasthenoteratozoospermia. In total 30 % males with spermatogenetic failure genetic factor of infertility was observed. Karyotype anomalies were observed in 17.5 % of infertile men, within 16.2 % numerical and structural gonosomal anomalies and in 1.3 % – Robertsonian translocation were revealed. In 11 % males with spermatogenetic failure, Y-chromosome AZF region microdeletions were detected. The frequency of CFTR major mutation F508del among infertile men was 6.25 %. 5T allele of polymorphic locus IVS8polyT was detected in 7.5 % of examined men. The results obtained indicate the high complexity of cytogenetic and moleculargenetic studies of male infertility.Π˜Π·ΡƒΡ‡Π°Π»ΠΈ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ хромосом, ΠΌΠΈΠΊΡ€ΠΎΠ΄Π΅Π»Π΅Ρ†ΠΈΠΈ AZF Ρ€Π΅Π³ΠΈΠΎΠ½Π° Y-хромосомы ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π³Π΅Π½Π° Π’Π Π‘Πœ Ρƒ 80 ΠΌΡƒΠΆΡ‡ΠΈΠ½ с идиопатичСскими Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ спСрматогСнСза, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: Ρƒ 36 (45 %) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с аспСрмиСй, 19 (24 %) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с азооспСрмиСй ΠΈ 25 (31 %) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с олигоастСнотСратозооспСрмиСй IV стСпСни. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ Ρƒ 30 % ΠΌΡƒΠΆΡ‡ΠΈΠ½ с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ спСрматогСнСза установлСны гСнСтичСскиС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ бСсплодия. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΊΠ°Ρ€ΠΈΠΎΡ‚ΠΈΠΏΠ° наблюдали Ρƒ 17.5 % бСсплодных ΠΌΡƒΠΆΡ‡ΠΈΠ½, срСди Π½ΠΈΡ… Ρƒ 16.2 % – количСствСнныС ΠΈ структурныС Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ хромосом ΠΈ Ρƒ 1.3 % – Ρ€ΠΎΠ±Π΅Ρ€Ρ‚ΡΠΎΠ½ΠΎΠ²ΡΠΊΡƒΡŽ Ρ‚Ρ€Π°Π½ΡΠ»ΠΎΠΊΠ°Ρ†ΠΈΡŽ. Π£ 11 % ΠΌΡƒΠΆΡ‡ΠΈΠ½ с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ спСрматогСнСза выявили ΠΌΠΈΠΊΡ€ΠΎΠ΄Π΅Π»Π΅Ρ†ΠΈΠΈ AZF Ρ€Π΅Π³ΠΈΠΎΠ½Π° Y хромосомы. Частота ΠΌΠ°ΠΆΠΎΡ€Π½ΠΎΠΉ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ F508del Π³Π΅Π½Π° Π’Π Π‘Πœ срСди бСсплодных ΠΌΡƒΠΆΡ‡ΠΈΠ½ составила 6.25 %. 5T аллСль ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„Π½ΠΎΠ³ΠΎ локуса IVS8polyT выявили Ρƒ 7.5 % обслСдованных ΠΌΡƒΠΆΡ‡ΠΈΠ½. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ высокой информативности комплСксного цитогСнСтичСского ΠΈ молСкулярно-гСнСтичСского исслСдования ΠΏΡ€ΠΈ муТском бСсплодии
    corecore