11 research outputs found
Molecular Cytogenetics and Cytogenomics of Brain Diseases
Molecular cytogenetics is a promising field of biomedical research that has recently revolutionized our thinking on genome structure and behavior. This is in part due to discoveries of human genomic variations and their contribution to biodiversity and disease. Since these studies were primarily targeted at variation of the genome structure, it appears apposite to cover them by molecular cytogenomics. Human brain diseases, which encompass pathogenic conditions from severe neurodegenerative diseases and major psychiatric disorders to brain tumors, are a heavy burden for the patients and their relatives. It has been suggested that most of them, if not all, are of genetic nature and several recent studies have supported the hypothesis assuming them to be associated with genomic instabilities (i.e. single-gene mutations, gross and subtle chromosome imbalances, aneuploidy). The present review is focused on the intriguing relationship between genomic instability and human brain diseases. Looking through the data, we were able to conclude that both interindividual and intercellular genomic variations could be pathogenic representing, therefore, a possible mechanism for human brain malfunctioning. Nevertheless, there are still numerous gaps in our knowledge concerning the link between genomic variations and brain diseases, which, hopefully, will be filled by forthcoming studies. In this light, the present review considers perspectives of this dynamically developing field of neurogenetics and genomics
Fluorescence intensity profiles of in situ hybridization signals depict genome architecture within human interphase nuclei
An approach towards construction of two-dimensional (2D) and three-dimensional (3D) profiles of interphase chromatin architecture by quantification of fluorescence in situ hybridization (FISH) signal intensity is proposed. The technique was applied for analysis of signal intensity and distribution within interphase nuclei of somatic cells in different human tissues. Whole genomic DNA, fraction of repeated DNA sequences (Cot1) and cloned satellite DNA were used as probes for FISH. The 2D and 3D fluorescence intensity profiles were able to depict FISH signal associations and somatic chromosome pairing. Furthermore, it allowed the detection of replicating signal patterns, the assessment of hybridization efficiency, and comparative analysis of DNA content variation of specific heterochromatic chromosomal regions. The 3D fluorescence intensity profiles allowed the analysis of intensity gradient within the signal volume. An approach was found applicable for determination of assembly of different types of DNA sequences, including classical satellite and alphoid DNA, gene-rich (G-negative bands) and gene-poor (G-positive bands) chromosomal regions as well as for assessment of chromatin architecture and targeted DNA sequence distribution within interphase nuclei. We conclude the approach to be a powerful additional tool for analysis of interphase genome architecture and chromosome behavior in the nucleus of human somatic cells.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²ΠΈ Π΄Π²ΠΎΠΌΡΡΠ½ΠΈΡ
(2D) ΡΠ° ΡΡΠΈΠΌΡΡΠ½ΠΈΡ
(3D) ΠΏΡΠΎΡΡΠ»ΡΠ² ΡΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΈΠ³Π½Π°Π»ΡΠ² ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΠΎΡ Π³ΡΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΡΡ in situ (FISH), ΡΠΎ Π·Π°ΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° ΠΊΡΠ»ΡΠΊΡΡΠ½ΡΠΉ FISH. ΠΠ°Π²Π΅Π΄Π΅Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π±ΡΠ»Π° Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π° Π΄Π»Ρ Π°Π½Π°Π»ΡΠ·Ρ ΡΠΎΠ·ΡΠ°ΡΡΠ²Π°Π½Π½Ρ ΡΠ° ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ»Ρ ΡΠΈΠ³Π½Π°Π»ΡΠ² Π² ΡΠ½ΡΠ΅ΡΡΠ°Π·Π½ΠΈΡ
ΡΠ΄ΡΠ°Ρ
ΠΊΠ»ΡΡΠΈΠ½ ΡΡΠ·Π½ΠΈΡ
ΡΠΎΠΌΠ°ΡΠΈΡΠ½ΠΈΡ
ΡΠΊΠ°Π½ΠΈΠ½ Π»ΡΠ΄ΠΈΠ½ΠΈ. ΠΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ 2D ΠΏΡΠΎΡΡΠ»ΡΠ² ΡΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΡΠ²Π°Π»ΠΎ ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ Π»ΠΎΠΊΠ°Π»ΡΠ·Π°ΡΡΡ FISH-ΡΠΈΠ³Π½Π°Π»ΡΠ². ΠΡΠ»ΡΡ ΡΠΎΠ³ΠΎ, Π΄Π°Π½ΠΈΠΉ ΠΏΡΠ΄Ρ
ΡΠ΄ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ² ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΡΠ²Π°ΡΠΈ ΡΠ΅ΠΏΠ»ΡΠΊΠΎΠ²Π°Π½Ρ ΡΠΈΠ³Π½Π°Π»ΠΈ, Π΄Π°ΡΠΈ ΠΎΡΡΠ½ΠΊΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π³ΡΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΡΡ ΡΠ° ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΠΎΡΡΠ²Π½ΡΠ»ΡΠ½ΠΈΠΉ Π°Π½Π°Π»ΡΠ· Π²Π°ΡΡΠ°ΡΡΡ Π²ΠΌΡΡΡΡ ΠΠΠ ΡΠΏΠ΅ΡΠΈΡΡΡΠ½ΠΈΡ
Π΄ΡΠ»ΡΠ½ΠΎΠΊ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌ. ΠΠΎΠ±ΡΠ΄ΠΎΠ²Π° 3D ΠΏΡΠΎΡΡΠ»ΡΠ² ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ» ΡΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ Ρ ΠΌΠ΅ΠΆΠ°Ρ
ΠΏΠ»ΠΎΡΡ ΡΠΈΠ³Π½Π°Π»Ρ. ΠΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π²ΠΈΠ·Π½Π°ΡΠΈΡΠΈ Π·ΠΎΡΠ΅ΡΠ΅Π΄ΠΆΠ΅Π½Π½Ρ ΡΡΠ·Π½ΠΈΡ
ΡΠΈΠΏΡΠ² ΠΏΠΎΡΠ»ΡΠ΄ΠΎΠ²Π½ΠΎΡΡΠ΅ΠΉ ΠΠΠ: ΠΊΠ»Π°ΡΠΈΡΠ½Π° ΡΠ°ΡΠ΅Π»ΡΡΠ½Π° ΡΠ° Π°Π»ΡΡΠΎΡΠ΄Π½Π° ΠΠΠ; Π³Π΅Π½ΠΎΠ½Π°ΡΠΈΡΠ΅Π½Ρ (G-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½Ρ ΠΏΠΎΠ»ΠΎΡΠΈ) Ρ Π³Π΅Π½ΠΎΠ½Π΅Π½Π°ΡΠΈΡΠ΅Π½Ρ (G-Π½Π΅Π³Π°ΡΠΈΠ²Π½Ρ ΠΏΠΎΠ»ΠΎΡΠΈ) Π΄ΡΠ»ΡΠ½ΠΊΠΈ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌ. ΠΡΡΠΌ ΡΡΠΎΠ³ΠΎ, ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π½Π°Π΄Π°Π»Π° ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ ΠΎΡΡΠ½ΠΈΡΠΈ ΡΠΎΠ·ΡΠ°ΡΡΠ²Π°Π½Π½Ρ Ρ
ΡΠΎΠΌΠ°ΡΠΈΠ½Π° Π² ΡΠ½ΡΠ΅ΡΡΠ°Π·Π½ΠΈΡ
ΡΠ΄ΡΠ°Ρ
ΡΠΊ ΠΊΡΠ»ΡΡΠΈΠ²ΠΎΠ²Π°Π½ΠΈΡ
, ΡΠ°ΠΊ Ρ Π½Π΅ΠΊΡΠ»ΡΡΠΈΠ²ΠΎΠ²Π°Π½ΠΈΡ
ΠΊΠ»ΡΡΠΈΠ½. ΠΡΠΎΠ±Π»Π΅Π½ΠΎ Π²ΠΈΡΠ½ΠΎΠ²ΠΎΠΊ, ΡΠΎ Π½Π°Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΏΡΠ΄Ρ
ΡΠ΄ Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡ Π΄ΠΎΠ΄Π°ΡΠΊΠΎΠ²ΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΎΡ Π΄Π»Ρ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ ΡΠ΄Π΅ΡΠ½ΠΎΡ ΠΎΡΠ³Π°Π½ΡΠ·Π°ΡΡΡ, ΡΠΏΠ΅ΡΠΈΡΡΠΊΠΈ Π²Π°ΡΡΠ°ΡΡΡ ΡΠ° ΡΠΎΠ·ΡΠ°ΡΡΠ²Π°Π½Π½Ρ ΠΏΠΎΡΠ»ΡΠ΄ΠΎΠ²Π½ΠΎΡΡΠ΅ΠΉ ΠΠΠ Π² ΡΠ½ΡΠ΅ΡΡΠ°Π·Π½ΠΈΡ
ΡΠ΄ΡΠ°Ρ
, Π° ΡΠ°ΠΊΠΎΠΆ ΠΏΠΎΠ²Π΅Π΄ΡΠ½ΠΊΠΈ ΡΠ΄Π΅Ρ ΠΏΡΠΈ ΠΏΡΠΈΠ³ΠΎΡΡΠ²Π°Π½Π½Ρ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΠ½ΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ² ΡΠΎΠΌΠ°ΡΠΈΡΠ½ΠΈΡ
ΠΊΠ»ΡΡΠΈΠ½ Π»ΡΠ΄ΠΈΠ½ΠΈ.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π΄Π²ΡΡ
ΠΌΠ΅ΡΠ½ΡΡ
(2D) ΠΈ ΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΡΡ
(3D) ΠΏΡΠΎΡΠΈΠ»Π΅ΠΉ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΠΎΠΉ Π³ΠΈΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΠΈΠΈ in situ (FISH), ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ FISH. ΠΠ°ΡΡΠΎΡΡΠ°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π±ΡΠ»Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° Π΄Π»Ρ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π² ΠΈΠ½ΡΠ΅ΡΡΠ°Π·Π½ΡΡ
ΡΠ΄ΡΠ°Ρ
ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΊΠ°Π½Π΅ΠΉ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ 2D ΠΏΡΠΎΡΠΈΠ»Π΅ΠΉ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ FISH-ΡΠΈΠ³Π½Π°Π»ΠΎΠ². ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ, ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ΅ΠΏΠ»ΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ, Π΄Π°ΡΡ ΠΎΡΠ΅Π½ΠΊΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π³ΠΈΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΠΠ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ°ΡΡΠΊΠΎΠ² Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌ. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ 3D ΠΏΡΠΎΡΠΈΠ»Π΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠΈΠ³Π½Π°Π»Π°. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΡΡΠ΅Π΄ΠΎΡΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠΏΠΎΠ² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ ΠΠΠ: ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΠ΅Π»Π»ΠΈΡΠ½Π°Ρ ΠΈ Π°Π»ΡΡΠΎΠΈΠ΄Π½Π°Ρ ΠΠΠ; Π³Π΅Π½Π½ΠΎΠ½Π°ΡΡΡΠ΅Π½Π½ΡΠ΅ (G-ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΎΡΡ) ΠΈ Π³Π΅Π½Π½ΠΎΠ½Π΅Π½Π°ΡΡΡΠ΅Π½Π½ΡΠ΅ (G-ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΎΡΡ) ΡΡΠ°ΡΡΠΊΠΈ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌ. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π΄Π°Π»Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ
ΡΠΎΠΌΠ°ΡΠΈΠ½Π° Π² ΠΈΠ½ΡΠ΅ΡΡΠ°Π·Π½ΡΡ
ΡΠ΄ΡΠ°Ρ
ΠΊΠ°ΠΊ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
, ΡΠ°ΠΊ ΠΈ Π½Π΅ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ» ΡΠ΄Π΅Π»Π°Π½ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΎΠΉ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠ΄Π΅ΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ, ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠΈ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΠΈ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ ΠΠΠ Π² ΠΈΠ½ΡΠ΅ΡΡΠ°Π·Π½ΡΡ
ΡΠ΄ΡΠ°Ρ
, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅- Π½ΠΈΡ ΡΠ΄Π΅Ρ ΠΏΡΠΈ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΠΈ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΠ½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°
ΠΠΠ‘Π’ΠΠΠΠΠ¬ΠΠΠ‘Π’Π¬ ΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠΠ ΠΠΠΠΠ: ΠΠ’ΠΠΠΠΠΠΠ―, ΠΠΠ’ΠΠΠΠΠΠ Π ΠΠΠΠ«Π ΠΠΠΠΠΠΠΠ§ΠΠ‘ΠΠΠ ΠΠΠ ΠΠΠ Π« ΠΠ‘ΠΠ₯ΠΠ§ΠΠ‘ΠΠΠ₯ ΠΠΠΠΠΠΠΠ
The latest advances in molecular medicine, medical genetics and neurobiology have provided for a new look at processes occurring in cells of the brain and have allowed to discover previously unknown phenomena associated with mental traits and to propose new biomedical direction which include genomics, psychiatry and neurobiology β brain genomics. The application of modern molecular and cellular technologies of genome analysis in the brain in common psychiatric disorders (autism, schizophrenia and Alzheimerβs disease) has shown that genomic instability is a phathogenetic mechanism of central nervous system abnormalities and plays a role in the brain development. Genomic disbalance alters neural homeostasis leads to cell death and is an important biological marker of psychiatric disorders which determine genomic pathways. These alterations lead to synaptic disfunction and neurodegeneration. In the present review, the main advances of brain genomics and potential application in diagnostic, clinical and therapeutic practice.Β ΠΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Ρ, ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ Π³Π΅Π½Π΅ΡΠΈΠΊΠΈ ΠΈ Π½Π΅ΠΉΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΏΠΎ-Π½ΠΎΠ²ΠΎΠΌΡ ΠΎΡΠ΅Π½ΠΈΡΡ ΠΏΡΠΎΡΠ΅ΡΡΡ, ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡΠΈΠ΅ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡΡ ΡΠ°Π½Π΅Π΅ Π½Π΅ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΡΠ΅Π½ΠΎΠΌΠ΅Π½Ρ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΠΌΠΈ ΠΏΡΠΈΡ
ΠΈΠΊΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΈ ΡΠΎΠ·Π΄Π°ΡΡ Π½ΠΎΠ²ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅, Π²ΠΎΠ·Π½ΠΈΠΊΡΠ΅Π΅ Π½Π° ΡΡΡΠΊΠ΅ Π³Π΅Π½ΠΎΠΌΠΈΠΊΠΈ, ΠΏΡΠΈΡ
ΠΈΠ°ΡΡΠΈΠΈ ΠΈ Π½Π΅ΠΉΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ, β Π³Π΅Π½ΠΎΠΌΠΈΠΊΡ ΠΌΠΎΠ·Π³Π°. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
ΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π°Π½Π°Π»ΠΈΠ·Π° Π³Π΅Π½ΠΎΠΌΠ° Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΏΡΠΈ ΡΠΈΡΠΎΠΊΠΎ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΡ
ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ Π·Π½Π°ΡΠΈΠΌΡΡ
ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΡ
(Π°ΡΡΠΈΠ·ΠΌ, ΡΠΈΠ·ΠΎΡΡΠ΅Π½ΠΈΡ ΠΈ Π±ΠΎΠ»Π΅Π·Π½Ρ ΠΠ»ΡΡΠ³Π΅ΠΉΠΌΠ΅ΡΠ°) ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ Π³Π΅Π½ΠΎΠΌΠ½Π°Ρ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΠ³ΡΠ°Π΅Ρ ΡΠΎΠ»Ρ Π² ΡΠ°Π·Π²ΠΈΡΠΈΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠΠ΅Π½Π½ΡΠΉ (Π³Π΅Π½ΠΎΠΌΠ½ΡΠΉ) Π΄ΠΈΡΠ±Π°Π»Π°Π½Ρ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½Π°ΡΡΡΠ°Π΅Ρ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π· Π½Π΅ΡΠ²Π½ΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠΈ, ΠΏΡΠΈΠ²ΠΎΠ΄Ρ ΠΊ Π΅Π΅ Π³ΠΈΠ±Π΅Π»ΠΈ, Π½ΠΎ ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π·Π½Π°ΡΠΈΠΌΡΠΌ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠΌ ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Π³Π΅Π½ΠΎΠΌΠ½ΡΠ΅ ΡΠ΅ΡΠΈ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΠΊΠΎΡΠΎΡΡΡ
ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠ½Π°ΠΏΡΠΎΠ² ΠΈΠ»ΠΈ Π½Π΅ΠΉΡΠΎΠ΄Π΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΌ ΠΎΠ±Π·ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ Π³Π΅Π½ΠΎΠΌΠΈΠΊΠΈ ΠΌΠΎΠ·Π³Π° ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΠΏΡΡΠΈ ΠΈΡ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ, ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅.
INTEGRATED CLINICAL AND GENETIC APPROACH FOR DIAGNOSIS OF RETT SYNDROME IN CHILDREN
Rett syndrome represents one of the most important neuropsychiatric genetic diseases. It affects generally girls with the incidence 1:10000β1:15000. Mutations in clinked gene mecp2 are considered as the main cause of the disease. The particular patterns of chromosome x replication (type C) are observed in affected females allowing the cytogenetic technique application for the diagnosis. Cytogenetic and molecular genetic studies carried out in the present work allowed us to propose an integrated approach for the diagnosis of this disease. A clinical description, cytogenetic analyses (assessment of an abnormal chromosome X replication type in affected females as well as chromosome complement abnormalities in affected males), molecular cytogenetic assays using DNA probes specific for mecp2 gene region, studying mecp2 mutations, and x chromosome inactivation pattern studies were combined in order to provide the efficient clinical and genetic diagnosis of RTT as well as counseling of family with affected children. The data obtained have shown to increase significantly the efficiency of the diagnosis as well as genetic counseling of families with Rett syndrome affected children.Key words: Rett syndrome, x-chromosome inactivation, mecp2 mutations, replication of chromosome x, children
Pericentric inversion inv(7)(p11q21.1): report on two cases and genotype-phenotype correlations
We report on two unrelated cases of pericentric inversion 46,XY,inv(7)(p11q21.1) associated with distinct pattern of malformation including mental retardation, development delay, ectrodactyly, facial dismorphism, high arched palate. Additionally, one case was found to be characterized by mesodermal dysplasia. Cytogenetic analysis of the families indicated that one case was a paternally inherited inversion whereas another case was a maternally inherited one. Molecular cytogenetic studies have shown paternal inversion to have a breakpoint within centromeric heterochromatin being the cause of alphoid DNA loss. Maternal inversion was also associated with a breakpoint within centromeric heterochromatin as well as inverted euchromatic chromosome region flanked by two disrupted alphoid DNA blocks.ΠΠΏΠΈΡΠ°Π½Ρ Π΄Π²Π° Π½Π΅ΡΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠ»ΡΡΠ°Ρ ΠΏΠ΅ΡΠΈΡΠ΅Π½ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½Π²Π΅ΡΡΠΈΠΈ 46,XY,inv(7)(p11q21.1), ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ Ρ ΡΠΌΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΎΡΡΡΠ°Π»ΠΎΡΡΡΡ, Π·Π°Π΄Π΅ΡΠΆΠΊΠΎΠΉ ΡΠ°Π·Π²ΠΈΡΠΈΡ, ΡΠΊΡΡΠΎΠ΄Π°ΠΊΡΠΈΠ»ΠΈΠ΅ΠΉ, Π°Π½ΠΎΠΌΠ°Π»ΠΈΡΠΌΠΈ Π»ΠΈΡΠ°, Π³ΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π½Π΅Π±ΠΎΠΌ. ΠΠΎΠΌΠΈΠΌΠΎ ΡΡΠΎΠ³ΠΎ, Π² ΠΎΠ΄Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈ ΠΌΠ΅Π·ΠΎΠ΄Π΅ΡΠΌΠ°Π»ΡΠ½ΡΡ Π΄ΠΈΡΠΏΠ»Π°Π·ΠΈΡ. Π¦ΠΈΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠ΅ΠΌΠ΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ Π² ΠΎΠ΄Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΈΠ½Π²Π΅ΡΡΠΈΡ ΠΈΠΌΠ΅Π»Π° ΠΎΡΡΠΎΠ²ΡΠΊΠΎΠ΅ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅, Π² Π΄ΡΡΠ³ΠΎΠΌ β ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΎΠ΅. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎ-ΡΠΈΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π±ΡΠ»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠΎΡΠΊΠ° ΡΠ°Π·ΡΡΠ²Π° ΠΈΠ½Π²Π΅ΡΡΠΈΠΈ ΠΎΡΡΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² ΡΠ΅Π½ΡΡΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π³Π΅ΡΠ΅ΡΠΎΡ
ΡΠΎΠΌΠ°ΡΠΈΠ½Π΅ ΠΈ ΡΠ²ΡΠ·Π°Π½Π° Ρ ΠΏΠΎΡΠ΅ΡΠ΅ΠΉ Π°Π»ΡΡΠΎΠΈΠ΄Π½ΠΎΠΉ ΠΠΠ. ΠΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΈΠ½Π²Π΅ΡΡΠΈΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π±ΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΎΡΠΊΠΈ ΡΠ°Π·ΡΡΠ²Π° ΡΠ°ΠΊΠΆΠ΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ Π² ΡΠ΅Π½ΡΡΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π³Π΅ΡΠ΅ΡΠΎΡ
ΡΠΎΠΌΠ°ΡΠΈΠ½Π΅ ΠΈ ΡΡΡ
ΡΠΎΠΌΠ°ΡΠΈΠ½Π΅ ΡΡΠ°ΡΡΠΊΠ° 7q21βq22, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΠ²Π΅ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΡΡ
ΡΠΎΠΌΠ°ΡΠΈΠ½ΠΎΠ²ΡΠΉ ΡΡΠ°ΡΡΠΎΠΊ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΡΡΡΠΎΠ΅Π½Π½ΡΠΌΠΈ Π±Π»ΠΎΠΊΠ°ΠΌΠΈ Π°Π»ΡΡΠΎΠΈΠ΄Π½ΠΎΠΉ ΠΠΠ
Chimerism and multiple numerical chromosome imbalances in a spontaneously aborted fetus
We report on a case of chimerism and multiple abnormalities of chromosomes 21, X and Y in spontaneous abortion specimen. To the best our knowledge the present case is the first documented chimera in a spontaneously aborted fetus. The application of interphase fluorescence in situ hybridization (FISH) using chromosome enumeration and site-specific DNA probes showed trisomy X in 92 nuclei (23 %), tetrasomy X in 100 nuclei (25 %), pentasomy of chromosome X in 40 nuclei (10 %), XXY in 36 nuclei (9 %), XXXXXXYY in 12 nuclei (3 %), XXXXXYYYYY in 8 nuclei (2 %), trisomy 21 and female chromosome complement in 40 nuclei (10 %), normal female chromosome complement in 72 nuclei (18 %) out of 400 nuclei scored. Our experience indicates that the frequency of chimerism coupled with multiple chromosome abnormalities should be no less than 1 : 400 among spontaneous abortions. The difficulties of chimerism identification in fetal tissues are discussed
Non-disjunction of chromosome 21, alphoid DNA variation, and sociogenetic features of Down syndrome
The analysis of non-disjunction of chromosome 21 and alphoid DNA variation by using cytogenetic and molecular cytogenetic techniques (quantitative fluorescence in situ hybridization) in 74 nuclear families was performed. The establishment of possible correlation between alphoid DNA variation, parental age, environmental effects, and non-disjunction of chromosome 21 was made. The efficiency of techniques applied was found to be 92 % (68 from 74 cases). Maternal non-disjunction was found in 58 cases (86 %) and paternal non-disjunction β in 7 cases (10 %). Post-zygotic mitotic non-disjunction was determined in 2 cases (3 %) and one case was associated with Robertsonian translocation 46,XX,der(21;21)(q10;q10),+21. Maternal meiosis I errors were found in 43 cases (64 %) and maternal meiosis II errors β in 15 cases (22 %). Paternal meiosis I errors occurred in 2 cases (3 %) and paternal meiosis I errors β in 5 cases (7 %). The lack of the correlation between alphoid DNA variation and non-disjunction of chromosome 21 was established. Sociogenetic analysis revealed the association of intensive drug therapy of infectious diseases during the periconceptual period and maternal meiotic non-disjunction of chromosome 21. The correlation between non-disjunction of chromosome 21 and increased parental age as well as exposure to irradiation, alcohol, tobacco, mutagenic substances was not found. The possible relevance of data obtained to the subsequent studies of chromosome 21 non-disjunction is discussed.ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Π½Π΅ΡΠ°ΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ 21 ΠΈ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ Π°Π»ΡΡΠΎΠΈΠ΄Π½ΠΎΠΉ ΠΠΠ Π² 74 ΡΠ΄Π΅ΡΠ½ΡΡ
ΡΠ΅ΠΌΡΡΡ
Ρ Π΄Π΅ΡΡΠΌΠΈ, ΡΡΡΠ°Π΄Π°ΡΡΠΈΠΌΠΈ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ ΠΠ°ΡΠ½Π°, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΈΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎ-ΡΠΈΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
(ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½Π°Ρ Π³ΠΈΠ±ΠΈΠ΄ΠΈΠ·Π°ΡΠΈΡ in situ) ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ². ΠΠΎΠΌΠΈΠΌΠΎ ΡΡΠΎΠ³ΠΎ, Π±ΡΠ» ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π²Π°ΡΠΈΠ°ΡΠΈΠ΅ΠΉ Π°Π»ΡΡΠΎΠΈΠ΄Π½ΠΎΠΉ ΠΠΠ, Π²ΠΎΠ·ΡΠ°ΡΡΠΎΠΌ ΡΠΎΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ, ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄Ρ ΠΈ Π½Π΅ΡΠ°ΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ 21. ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 92 % (68 ΠΈΠ· 74 ΡΠ»ΡΡΠ°Π΅Π²). ΠΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΎΠ΅ Π½Π΅ΡΠ°ΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π±ΡΠ»ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ Π² 58 ΡΠ»ΡΡΠ°ΡΡ
(86 %), ΠΎΡΡΠΎΠ²ΡΠΊΠΎΠ΅ β Π² 7 ΡΠ»ΡΡΠ°ΡΡ
(10 %). ΠΠΎΡΡΠ·ΠΈΠ³ΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΈΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π½Π΅ΡΠ°ΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π±ΡΠ»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ Π² 2 ΡΠ»ΡΡΠ°ΡΡ
(3 %) ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ β ΡΠΎΠ±Π΅ΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠ°Ρ ΡΡΠ°Π½ΡΠ»ΠΎΠΊΠ°ΡΠΈΡ 46,XX,der(21;21)(q10;q10),+21. ΠΡΠΈΠ±ΠΊΠΈ Π² ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΎΠΌ ΠΌΠ΅ΠΉΠΎΠ·Π΅ I Π±ΡΠ»ΠΈ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Ρ Π² 43 ΡΠ»ΡΡΠ°ΡΡ
(64 %), Π² ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΎΠΌ ΠΌΠ΅ΠΉΠΎΠ·Π΅ II β Π² 15 ΡΠ»ΡΡΠ°ΡΡ
(22 %). ΠΡΠΈΠ±ΠΊΠΈ Π² ΠΎΡΡΠΎΠ²ΡΠΊΠΎΠΌ ΠΌΠ΅ΠΉΠΎΠ·Π΅ I Π±ΡΠ»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π² 2 ΡΠ»ΡΡΠ°ΡΡ
(2 %), Π² ΠΎΡΡΠΎΠ²ΡΠΊΠΎΠΌ ΠΌΠ΅ΠΉΠΎΠ·Π΅ II β Π² 5 ΡΠ»ΡΡΠ°ΡΡ
(7 %). ΠΡΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π²Π°ΡΠΈΠ°ΡΠΈΠ΅ΠΉ Π°Π»ΡΡΠΎΠΈΠ΄Π½ΠΎΠΉ ΠΠΠ ΠΈ Π½Π΅ΡΠ°ΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ 21. Π‘ΠΎΡΠΈΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·Π°Π» Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΠΉ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠ΅ΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π² ΠΏΠ΅ΡΠΈΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Π΅ ΠΈ Π½Π΅ΡΠ°ΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ 21 Π² ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΎΠΌ ΠΌΠ΅ΠΉΠΎΠ·Π΅. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅, ΡΡΠΎ Π½Π΅ΡΠ°ΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ 21 Π½Π΅Π»ΡΠ·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎ ΡΠ²ΡΠ·Π°Π½Π½ΡΠΌ Ρ Π±ΠΎΠ»ΡΡΠΈΠΌ Π²ΠΎΠ·ΡΠ°ΡΡΠΎΠΌ ΡΠΎΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ, Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΈ, ΡΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Π»ΠΊΠΎΠ³ΠΎΠ»Ρ, ΠΊΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π±Π°ΠΊΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Ρ ΠΌΡΡΠ°Π³Π΅Π½Π½ΡΠΌ ΡΡΡΠ΅ΠΊΡΠΎΠΌ. ΠΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π΅ΡΠ°ΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ 21
Factors Influencing the Success Of Autism Spectrum Disorders Overcoming
No more than 10β20% of children with autism, as becoming adults can adapt to a relatively independent life. Despite many publications dedicated to autism, relatively little work has examined the output characteristics and pathomorphosis of psychic and cognitive disorders in people with autism spectrum disorders (ASD). Only few longitudinal studies allow us to represent what happens in later life with people who have ASD. For conducting effective correctional interventions overcomingwith children with ASD there is need to identify predictors of successful overcome of disorders. The basis for the study, conducted by a team of psychologists and neuroscientists, was the assumption that the information about the features of violations of basic neurobiological mechanisms in people with autism spectrum disorders should determine the tactics of assistance. Genetic, neurophysiological and psychological factors, causing more successful overcoming of these disorders in children are revealed
Complex cytogenetic and molecular-genetic analysis of males with spermatogenesis failure
The chromosomal anomalies, microdeletions of AZF region of Y-chromosome and CFTR gene mutations have been studied among 80 infertile men with idiopathic spermatogenetic failure: 36 (45 %) patients with aspermia, 19 (24 %) patients with azoospermia and 25 (31 %) patients with severe oligoasthenoteratozoospermia. In total 30 % males with spermatogenetic failure genetic factor of infertility was observed. Karyotype anomalies were observed in 17.5 % of infertile men, within 16.2 % numerical and structural gonosomal anomalies and in 1.3 % β Robertsonian translocation were revealed. In 11 % males with spermatogenetic failure, Y-chromosome AZF region microdeletions were detected. The frequency of CFTR major mutation F508del among infertile men was 6.25 %. 5T allele of polymorphic locus IVS8polyT was detected in 7.5 % of examined men. The results obtained indicate the high complexity of cytogenetic and moleculargenetic studies of male infertility.ΠΠ·ΡΡΠ°Π»ΠΈ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌ, ΠΌΠΈΠΊΡΠΎΠ΄Π΅Π»Π΅ΡΠΈΠΈ AZF ΡΠ΅Π³ΠΈΠΎΠ½Π° Y-Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ ΠΈ ΠΌΡΡΠ°ΡΠΈΠΈ Π³Π΅Π½Π° Π’Π ΠΠ Ρ 80 ΠΌΡΠΆΡΠΈΠ½ Ρ ΠΈΠ΄ΠΈΠΎΠΏΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΠΏΠ΅ΡΠΌΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: Ρ 36 (45 %) ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π°ΡΠΏΠ΅ΡΠΌΠΈΠ΅ΠΉ, 19 (24 %) ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π°Π·ΠΎΠΎΡΠΏΠ΅ΡΠΌΠΈΠ΅ΠΉ ΠΈ 25 (31 %) ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΎΠ»ΠΈΠ³ΠΎΠ°ΡΡΠ΅Π½ΠΎΡΠ΅ΡΠ°ΡΠΎΠ·ΠΎΠΎΡΠΏΠ΅ΡΠΌΠΈΠ΅ΠΉ IV ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. Π ΠΎΠ±ΡΠ΅ΠΌ Ρ 30 % ΠΌΡΠΆΡΠΈΠ½ Ρ Π½Π°ΡΡΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΠΏΠ΅ΡΠΌΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΠΊΡΠΎΡΡ Π±Π΅ΡΠΏΠ»ΠΎΠ΄ΠΈΡ. ΠΠ°ΡΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠΈΠΎΡΠΈΠΏΠ° Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈ Ρ 17.5 % Π±Π΅ΡΠΏΠ»ΠΎΠ΄Π½ΡΡ
ΠΌΡΠΆΡΠΈΠ½, ΡΡΠ΅Π΄ΠΈ Π½ΠΈΡ
Ρ 16.2 % β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΡΠ΅ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌ ΠΈ Ρ 1.3 % β ΡΠΎΠ±Π΅ΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΡΡ ΡΡΠ°Π½ΡΠ»ΠΎΠΊΠ°ΡΠΈΡ. Π£ 11 % ΠΌΡΠΆΡΠΈΠ½ Ρ Π½Π°ΡΡΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΠΏΠ΅ΡΠΌΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π° Π²ΡΡΠ²ΠΈΠ»ΠΈ ΠΌΠΈΠΊΡΠΎΠ΄Π΅Π»Π΅ΡΠΈΠΈ AZF ΡΠ΅Π³ΠΈΠΎΠ½Π° Y Ρ
ΡΠΎΠΌΠΎΡΠΎΠΌΡ. Π§Π°ΡΡΠΎΡΠ° ΠΌΠ°ΠΆΠΎΡΠ½ΠΎΠΉ ΠΌΡΡΠ°ΡΠΈΠΈ F508del Π³Π΅Π½Π° Π’Π ΠΠ ΡΡΠ΅Π΄ΠΈ Π±Π΅ΡΠΏΠ»ΠΎΠ΄Π½ΡΡ
ΠΌΡΠΆΡΠΈΠ½ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 6.25 %. 5T Π°Π»Π»Π΅Π»Ρ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠ½ΠΎΠ³ΠΎ Π»ΠΎΠΊΡΡΠ° IVS8polyT Π²ΡΡΠ²ΠΈΠ»ΠΈ Ρ 7.5 % ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΠΌΡΠΆΡΠΈΠ½. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎ-Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈ ΠΌΡΠΆΡΠΊΠΎΠΌ Π±Π΅ΡΠΏΠ»ΠΎΠ΄ΠΈΠΈ