10 research outputs found

    Electrochemical Measurement of Interfacial Distribution and Diffusion Coefficients of Electroactive Species for Ion-Exchange Membranes: Application to Br2/Br− Redox Couple

    No full text
    A novel method has been proposed for rapid determination of principal transmembrane transport parameters for solute electroactive co-ions/molecules, in relation to the crossover problem in power sources. It is based on direct measurements of current for the electrode, separated from solution by an ion-exchange membrane, under voltammetric and chronoamperometric regimes. An electroactive reagent is initially distributed within the membrane/solution space under equilibrium. Then, potential change induces its transformation into the product at the electrode under the diffusion-limited regime. For the chronoamperometric experiment, the electrode potential steps backward after the current stabilization, thus inducing an opposite redox transformation. Novel analytical solutions for nonstationary concentrations and current have been derived for such two-stage regime. The comparison of theoretical predictions with experimental data for the Br2/Br− redox couple (where only Br− is initially present) has provided the diffusion coefficients of the Br− and Br2 species inside the membrane, D(Br−) = (2.98 ± 0.27) 10−6 cm2/s and D(Br2) = (1.10 ± 0.07) 10−6 cm2/s, and the distribution coefficient of the Br− species at the membrane/solution boundary, K(Br−) = 0.190 ± 0.005, for various HBr additions (0.125–0.75 M) to aqueous 2 M H2SO4 solution. This possibility to determine transport characteristics of two electroactive species, the initial solute component and its redox product, within a single experiment, represents a unique feature of this study

    Current Distribution in the Discharge Unit of a 10-Cell Vanadium Redox Flow Battery: Comparison of the Computational Model with Experiment

    No full text
    Shunting currents are among the main problems of all-vanadium redox flow battery stacks since, in addition to capacity losses, they cause negative effects associated with the local destruction of electrodes and bipolar plates. The values of both the shunting currents and their destructive effects on materials can be reduced at the battery development stage by adjusting the resistance of the electrolyte supply channels. The solution to this problem can be found using a calculation model for current distribution based on the current balance in the nodes as well as voltage drops and electromotive force in internal circuits according to Kirchhoff’s laws. This paper presents the verification of the model of current distribution in an all-vanadium redox flow battery stack of an original design that allows for the determination of membrane-electrode assembly resistances and electrolyte supply channels via direct measurements. Based on a comparison of the calculated and experimental values of the coulombic efficiency of charge–discharge cycles, the capacity fade associated with the crossover of vanadium compounds through the membrane has been determined

    Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism

    No full text
    Bromate reduction from strongly acidic solutions under steady-state conditions in the presence of a very small amount of bromine has been studied voltammetrically at disk microelectrodes of various radii. In conformity with theoretical predictions the intensity of the average current density depends on the electrode size in a non-monotonous manner, passing through a maximum for a certain radius. This behavior is a direct consequence of the autocatalytic character of this process where the non-electroactive bromate anion is reduced owing to the catalytic cycle based on the bromine/bromide redox-mediator couple. The experimentally observed dependence of the maximal current density, jmax, on the inverse disc radius, 1/r0, for electrodes of larger sizes approaches a straight line corresponding to the “strong current limit”, which exceeds the diffusion-limited current density for bromate ion. Keywords: Autocatalytic cycle, Bromine/bromide redox mediation, Comproportionation reaction, Disk microelectrod

    Hydrogen-Chlorate Electric Power Source: Feasibility of the Device, Discharge Characteristics and Modes of Operation

    No full text
    A power source based on the current-generating reaction of aqueous chlorate-to-chloride reduction by molecular hydrogen would provide as much as 1150 Wh per 1 L of reagent storage (for a combination of 700 atm compressed hydrogen and saturated aqueous solution of lithium chlorate) at room temperature, but direct electroreduction of chlorate only proceeds with unacceptably high overvoltages, even for the most catalytically active electrodes. In the present study, we experimentally demonstrated that this process can be performed via redox-mediator catalysis by intermediate products of chlorate reduction, owing to their participation in homogeneous com- and disproportionation reactions. A series of current–voltage and discharge characteristics were measured for hydrogen-chlorate membrane–electrode assembly (MEA) cells at various concentrations of chlorate and sulfuric acid under operando spectrophotometric monitoring of the electrolyte composition during the discharge. We established that chlorine dioxide (ClO2) is the key intermediate product; its fraction in the electrolyte solution increases progressively, up to its maximum, equal to 0.4–0.6 of the initial amount of chlorate anions, whereas the ClO2 amount decreases gradually to a zero value in the later stage. In most discharge experiments, the Faradaic yield exceeded 90% (maximal value: 99%), providing approximately 48% chemical energy storage-to-electricity conversion efficiency at maximal power of the discharge (max value: 402 mW/cm2). These results support prospect of a hydrogen-chlorate flow current generator as a highly specific energy-capacity source for airless media

    Data publication: Modification of Porous Ultralow‑k Film by Vacuum Ultraviolet Emission

    No full text
    Modification of spin-on-deposited porous PMO (periodic mesoporous organosilica) ultralow-k (ULK) SiCOH films (k = 2.33) containing both methyl terminal and methylene bridging groups by vacuum ultraviolet (VUV) emission from Xe plasma is studied. The temporal evolution of chemical composition, internal defects, and morphological properties (pore structure transformation) is studied by using Fourier transform infrared spectroscopy, in situ laser ellipsometry, spectroscopic ellipsometry, ellipsometric porosimetry (EP), positron-annihilation lifetime spectroscopy (PALS), and Doppler broadening positron-annihilation spectroscopy. Application of the different advanced diagnostics allows making conclusions on the dynamics of the chemical composition and pore structure. The time frame of the VUV exposure in the current investigation can be divided into two phases. During the first short phase, film loses almost all of its surface methyl and matrix bridging groups. An increase of material porosity due to removal of methyl groups with simultaneous matrix shrinkage is found by in situ ellipsometry. The removal of bridging bonds leads to an increase of matrix intrinsic porosity. Nevertheless, when the treated material is exposed to the ambient air, the sizes of micro- and mesopores and pores interconnectivity decrease with the VUV exposure time according to PAS and EP data. The last is the result of the additional film shrinkage caused by atmosphere exposure. During the second phase the increase of mesopore size is detected by both EP and PAS. The increase of mesopore size goes all the time as it is expected from in situ ellipsometry, but it is masked by the air exposure

    A Hydrogen-Bromate Flow Battery as a Rechargeable Chemical Power Source

    No full text
    The hydrogen-bromate flow battery represents one of the promising variants for hybrid power sources. Its membrane-electrode assembly (MEA) combines a hydrogen gas diffusion anode and a porous flow-through cathode where bromate reduction takes place from its acidized aqueous solution: BrO3− + 6 H+ + 6 e− = Br− + 3 H2O (*). The process of electric current generation occurs on the basis of the overall reaction: 3 H2 + BrO3− = Br− + 3 H2O (**), which has been studied in previous publications. Until this work, it has been unknown whether this device is able to function as a rechargeable power source. This means that the bromide anion, Br−, should be electrooxidized into the bromate anion, BrO3−, in the course of the charging stage inside the same cell under strongly acidic conditions, while until now this process has only been carried out in neutral or alkaline solutions with specially designed anode materials. In this study, we have demonstrated that processes (*) and (**) can be performed in a cyclic manner, i.e., as a series of charge and discharge stages with the use of MEA: H2, Freidenberg H23C8 Pt-C/GP-IEM 103/Sigracet 39AA, HBr + H2SO4; square cross-section of 4 cm2 surface area, under an alternating galvanostatic mode at a current density of 75 mA/cm2. The coulombic, voltaic and energy efficiencies of the flow battery under a cyclic regime, as well as the absorption spectra of the catholyte, were measured during its operation. The total amount of Br-containing compounds penetrating through the membrane into the anode space was also determined

    Hydrate-based technique for natural gas processing: Experimental study of pressure-dropping and continuous modes

    No full text
    Gas hydrate crystallization is perspective and energy-efficient technology for gas mixtures processing, including natural gas. There were compared pressure-dropping and continuous gas hydrate crystallization methods for separation of gas mixture closed to natural gas. The studied mixture has been chosen similar to the natural gas composition: CH4 (75.68 mol.%) - С2H6 (7.41 mol.%) - C3H8 (4.53 mol.%) - н-C4H10 (2.47 mol.%) - CO2 (5.40 mol.%) - H2S (1.39 mol.%) - N2 (3.01 mol.%) - Xe (0.11 mol.%). Experiments were provided in the 4 L high pressure reactor, using water solution of SDS (0.20 wt.%). The experiment conditions were 280.15 K and pressure of 4.25 MPa. The components separation factors and recovery for two modes have been researched and compared for choosing more effective options. After comparing these characteristics, it was concluded that continuous process is more productive than pressure-dropping mode. At the stage cut (θ) of 0.9, the gas components total recovery (R) for the continuous mode have exceeded the total recovery for the pressure-dropping mode by 8.15 %, and at θ = 0.8, exceeded by 6.11 %. The recovery and separation factors have the highest values for H2S, C3H8, Xe in the continuous mode: 97.62 %, 94.90 %, 84.98 % and 8.7, 10.53, 6.36, respectively. Thus, the choosing of the more effective stage cut depends on the aim of the process: the highest purity or the largest recovery
    corecore