1,552 research outputs found

    Cluster quantum computer on the basis of quasi-part

    Full text link
    The present paper deals with the possibility of creation of the quantum computer in which the role of q-bits is played by quasi-particles. In such a computer, the elementary computation block should represent a cluster created on the basis of the paramagnetic molecules. The latter form heterogeneous spin states in the cluster owing to the presence of interelectron correlations.Comment: 4 page

    Pseudospin symmetry and structure of nuclei with ZZ\ge 100

    Get PDF
    In the framework of the Relativistic Mean Field Approach a pseudospin dependence of the residual forces in nuclei is considered. It is shown that this dependence is relatively weak. As a consequence, a pseudospin dependence of the particle--core coupling is weak as well. This leads to a small splitting of the pseudospin doublets produced by a vector coupling of an odd particle pseudospin and a pseudo--orbital momentum of the core. Some possibilities for experimental investigations of the manifestations of the pseudospin symmetry in the spectra of odd nuclei with ZZ\ge 100 are indicated.Comment: 12 pages, 3 figure

    Ground state correlations and anharmonicity of vibrations

    Get PDF
    A consistent treatment of the ground state correlations beyond the random phase approximation including their influence on the pairing and phonon-phonon coupling in nuclei is presented. A new general system of nonlinear equations for the quasiparticle phonon model (QPM) is derived. It is shown that this system contains as a particular case all equations derived for the QPM early. New additional Pauli principle corrections resulting in the anharmonical shifts of energies of the two-phonon configurations are found. A correspondence between the generalized QPM equations and the nuclear field theory is discussed.Comment: 22 pages, 3 postscript figures, added reference

    Q-phonon description of low lying 1^- two-phonon states in spherical nuclei

    Full text link
    The properties of 1^-_1 two-phonon states and the characteristics of E1 transition probabilities between low-lying collective states in spherical nuclei are analysed within the Q-phonon approach to the description of collective states. Several relations between observables are obtained. Microscopic calculations of the E1 0^+_1 -> 1^-_1 transition matrix elements are performed on the basis of the RPA. A satisfactory description of the experimental data is obtained.Comment: 16 pages, 2 figures, 9 table

    On neutron number dependence of B(E1;0+ --> 1-) reduced transition probability

    Full text link
    A neutron number dependence of the E1 0+ --> 1- reduced transition probability in spherical even--even nuclei is analysed within the Q--phonon approach in the fermionic space to describe the structure of collective states. Microscopic calculations of the E1 0+ --> 1- transition matrix elements are carried out for the Xe isotopes based on the RPA for the ground state wave function. A satisfactory description of the experimental data is obtained.Comment: 8 pages, 4 figure
    corecore