980 research outputs found

    Antiproton-Hydrogen annihilation at sub-kelvin temperatures

    Get PDF
    The main properties of the interaction of ultra low-energy antiprotons (E106% E\le10^{-6} a.u.) with atomic hydrogen are established. They include the elastic and inelastic cross sections and Protonium (Pn) formation spectrum. The inverse Auger process (Pn+eH+pˉPn+e \to H+\bar{p}) is taken into account in the framework of an unitary coupled-channels model. The annihilation cross-section is found to be several times smaller than the predictions made by the black sphere absorption models. A family of pˉH\bar{p}H nearthreshold metastable states is predicited. The dependence of Protonium formation probability on the position of such nearthreshold S-matrix singularities is analysed. An estimation for the HHˉH\bar{H} annihilation cross section is obtained.Comment: latex.tar.gz file, 22 pages, 9 figure

    Low-energy Antiproton Interaction with Helium

    Get PDF
    An ab initio potential for the interaction of the neutral helium atom with antiprotons and protons is calculated using the Born-Oppenheimer approximation. Using this potential, the annihilation cross section for antiprotons in the energy range 0.01 microvolt to 1 eV is calculated.Comment: 13 pages, 7 figures, LaTe

    Observation of narrow baryon resonance decaying into pKs0pK^0_s in pA-interactions at 70GeV/c70 GeV/c with SVD-2 setup

    Full text link
    SVD-2 experiment data have been analyzed to search for an exotic baryon state, the Θ+\Theta^+-baryon, in a pKs0pK^0_s decay mode at 70GeV/c70 GeV/c on IHEP accelerator. The reaction pApKs0+XpA \to pK^0_s+X with a limited multiplicity was used in the analysis. The pKs0pK^0_s invariant mass spectrum shows a resonant structure with M=1526±3(stat.)±3(syst.)MeV/c2M=1526\pm3(stat.)\pm 3(syst.) MeV/c^2 and Γ<24MeV/c2\Gamma < 24 MeV/c^2. The statistical significance of this peak was estimated to be of 5.6σ5.6 \sigma. The mass and width of the resonance is compatible with the recently reported Θ+\Theta^+- baryon with positive strangeness which was predicted as an exotic pentaquark (uuddsˉuudd\bar{s}) baryon state. The total cross section for Θ+\Theta^+ production in pN-interactions for XF0X_F\ge 0 was estimated to be (30÷120)μb(30\div120) \mu b and no essential deviation from A-dependence for inelastic events (A0.7)(\sim A^{0.7}) was found.Comment: 8 pages, 7 figures, To be submitted to Yadernaya Fizika. v3-v5 - Some references added, minor typos correcte

    Quantum motion of a neutron in a wave-guide in the gravitational field

    Full text link
    We study theoretically the quantum motion of a neutron in a horizontal wave-guide in the gravitational field of the Earth. The wave-guide in question is equipped with a mirror below and a rough absorber above. We show that such a system acts as a quantum filter, i.e. it effectively absorbs quantum states with sufficiently high transversal energy but transmits low-energy states. The states transmitted are mainly determined by the potential well formed by the gravitational field of the Earth and the mirror. The formalism developed for quantum motion in an absorbing wave-guide is applied to the description of the recent experiment on the observation of the quantum states of neutrons in the Earth's gravitational field

    GRANIT project: a trap for gravitational quantum states of UCN

    Full text link
    Previous studies of gravitationally bound states of ultracold neutrons showed the quantization of energy levels, and confirmed quantum mechanical predictions for the average size of the two lowest energy states wave functions. Improvements in position-like measurements can increase the accuracy by an order of magnitude only. We therefore develop another approach, consisting in accurate measurements of the energy levels. The GRANIT experiment is devoted to the study of resonant transitions between quantum states induced by an oscillating perturbation. According to Heisenberg's uncertainty relations, the accuracy of measurement of the energy levels is limited by the time available to perform the transitions. Thus, trapping quantum states will be necessary, and each source of losses has to be controlled in order to maximize the lifetime of the states. We discuss the general principles of transitions between quantum states, and consider the main systematical losses of neutrons in a trap.Comment: presented in ISINN 15 seminar, Dubn

    Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment

    Get PDF
    We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment
    corecore