5,302 research outputs found

    Development of hollow electron beams for proton and ion collimation

    Full text link
    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.Comment: 3 pp. 1st International Particle Accelerator Conference: IPAC'10, 23-28 May 2010: Kyoto, Japa

    Hollow Electron Beam Collimator: R&D Status Report

    Full text link
    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.Comment: 5 pp. 14th Advanced Accelerator Concepts Workshop 13-19 Jun 2010: Annapolis, Marylan

    Beam halo dynamics and control with hollow electron beams

    Full text link
    Experimental measurements of beam halo diffusion dynamics with collimator scans are reviewed. The concept of halo control with a hollow electron beam collimator, its demonstration at the Tevatron, and its possible applications at the LHC are discussed.Comment: 5 pages, 4 figures, in Proceedings of the 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB2012), Beijing, China, 17-21 September 201

    Collimation with hollow electron beams

    Full text link
    A novel concept of controlled halo removal for intense high-energy beams in storage rings and colliders is presented. It is based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. The first results on the collimation of 980-GeV antiprotons are presented.Comment: 4 pages, 5 figure

    Properties of Neutral Charmed Mesons in Proton--Nucleus Interactions at 70 GeV

    Full text link
    The results of treatment of data obtained in the SERP-E-184experiment "Investigation of mechanisms of the production of charmed particles in proton-nucleus interactions at 70 GeV and their decays" by irradiating the active target of the SVD-2 facility consisting of carbon, silicon, and lead plates, are presented. After separating a signal from the two-particle decay of neutral charmed mesons and estimating the cross section for charm production at a threshold energy {\sigma}(c\v{c})=7.1 \pm 2.4(stat.) \pm 1.4(syst.) \mub/nucleon, some properties of D mesons are investigated. These include the dependence of the cross section on the target mass number (its A dependence); the behavior of the differential cross sections d{\sigma}/dpt2 and d{\sigma}/dxF; and the dependence of the parameter {\alpha} on the kinematical variables xF, pt2, and plab. The experimental results in question are compared with predictions obtained on the basis of the FRITIOF7.02 code.Comment: 9 pages, 9 figures,3 table
    corecore