49 research outputs found

    Pushing limits of photovoltaics and photodetection using radial junction nanowire devices

    Full text link
    Nanowire devices have long been proposed as an efficient alternative to their planar counterparts for different optoelectronic applications. Unfortunately, challenges related to the growth and characterization of doping and p-n junction formation in nanowire devices (along axial or radial axis) have significantly impeded their development. The problems are further amplified if a p-n junction has to be implemented radially. Therefore, even though radial junction devices are expected to be on par with their axial junction counterparts, there are minimal reports on high-performance radial junction nanowire optoelectronic devices. This paper summarizes our recent results on the simulation and fabrication of radial junction nanowire solar cells and photodetectors, which have shown unprecedented performance and clearly demonstrate the importance of radial junction for optoelectronic applications. Our simulation results show that the proposed radial junction device is both optically and electrically optimal for solar cell and photodetector applications, especially if the absorber quality is extremely low. The radial junction nanowire solar cells could achieve a 17.2% efficiency, whereas the unbiased radial junction photodetector could show sensitivity down to a single photon level using an absorber with a lifetime of less than 50 ps. In comparison, the axial junction planar device made using same substrate as absorber showed less than 1% solar cell efficiency and almost no photodetection at 0 V. This study is conclusive experimental proof of the superiority of radial junction nanowire devices over their thin film or axial junction counterparts, especially when absorber lifetime is extremely low. The proposed device holds huge promise for III-V based photovoltaics and photodetectors

    Wavelength selective filter based on polarization control in a photonic bandgap structure with a defect

    Get PDF
    We present a technique for achieving wavelength specific half-wave retardation upon reflection from an asymmetric one-dimensional photonic band-gap structure with a defect. The approach is based on a high finesse Gires-Tournois type interferometer and makes use of the large mode splitting of TE and TM defect modes that occurs in structures with a wide photonic band-gap. We use this structure to demonstrate a polarization-based selective tuneable filter with a narrow pass-band and wide rejection-band

    Enhanced luminescence from GaN nanopillar arrays fabricated using a top-down process

    Get PDF
    We report the fabrication of GaN nanopillar arrays with good structural uniformity using the top-down approach. The photoluminescence intensity from the nanopillar arrays is enhanced compared to the epilayer. We use finite difference time domain simulations to show that the enhancement in photoluminescence intensity from the nanopillar arrays is a result of anti-reflection properties of the arrays that result in enhanced light absorption and increase light extraction efficiency compared to the epilayer. The measured quantum efficiency of the nanopillars is comparable to that of an epitaxially grown GaN epilayer.ARC grant DP140103278 (2014-2016) - H.H. Tan, Nitride-based Compound Semiconductors for Solar Water Splittin

    Indium phosphide based solar cell using ultra-thin ZnO as an electron selective layer

    Get PDF
    According to the Shockley–Queisser limit, the maximum achievable efficiency for a single junction solar cell is ~33.2% which corresponds to a bandgap (E g) of 1.35 eV (InP). However, the maximum reported efficiency for InP solar cells remain at 24.2%  ±  0.5%, that is  >25% below the standard Shockley–Queisser limit. Through a wide range of simulations, we propose a new device structure, ITO/ ZnO/i-InP/p+ InP (p-i-ZnO-ITO) which might be able to fill this efficiency gap. Our simulation shows that the use of a thin ZnO layer improves passivation of the underlying i-InP layer and provides electron selectivity leading to significantly higher efficiency when compared to their n+/i/p+ homojunction counterpart. As a proof-of-concept, we fabricated ITO/ZnO/i-InP solar cell on a p+ InP substrate and achieved an open-circuit voltage (V oc) and efficiency as high as 819 mV and 18.12%, respectively, along with ~90% internal quantum efficiency. The entire device fabrication process consists of four simple steps which are highly controllable and reproducible. This work lays the foundation for a new generation of thin film InP solar cells based solely on carrier selective heterojunctions without the requirement of extrinsic doping and can be particularly useful when p- and n-doping are challenging as in the case of III–V nanostructures.This research is supported by the Australian Research Council

    Ultrathin Ta2O5 electron-selective contacts for high efficiency InP solar cells

    Get PDF
    Heterojunction solar cells with transition-metal-oxide-based carrier-selective contacts have been gaining considerable research interest owing to their amenability to low-cost fabrication methods and elimination of parasitic absorption and complex semiconductor doping process. In this work, we propose tantalum oxide (Ta2O5) as a novel electron-selective contact layer for photo-generated carrier separation in InP solar cells. We confirm the electron-selective properties of Ta2O5 by investigating band energetics at the InP-Ta2O5 interface using X-ray photoelectron spectroscopy. Time-resolved photoluminescence and power dependent photoluminescence reveal that the Ta2O5 inter-layer also mitigates parasitic recombination at the InP/transparent conducting oxide interface. With an 8 nm Ta2O5 layer deposited using an atomic layer deposition (ALD) system, we demonstrate a planar InP solar cell with an open circuit voltage, Voc, of 822 mV, a short circuit current density, Jsc, of 30.1 mA/cm2, and a fill factor of 0.77, resulting in an overall device efficiency of 19.1%. The Voc is the highest reported value to date for an InP heterojunction solar cells with carrier-selective contacts. The proposed Ta2O5 material may be of interest not only for other solar cell architectures including perovskite cells and organic solar cells, but also across a wide range of optoelectronics applications including solid state emitting devices, photonic crystals, planar light wave circuits etc

    Nanowire Array Breath Acetone Sensor for Diabetes Monitoring

    Full text link
    Diabetic ketoacidosis (DKA) is a life-threatening acute complication of diabetes in which ketone bodies accumulate in the blood. Breath acetone (a ketone) directly correlates with blood ketones, such that breath acetone monitoring could be used to improve safety in diabetes care. In this work, we report the design and fabrication of a chitosan/Pt/InP nanowire array based chemiresistive acetone sensor. By implementing chitosan as a surface functionalization layer and a Pt Schottky contact for efficient charge transfer processes and photovoltaic effect, self-powered, highly selective acetone sensing has been achieved. This sensor has an ultra-wide detection range from sub-ppb to >100,000 ppm levels at room temperature, incorporating the range from healthy individuals (300-800 ppb) to those at high-risk of DKA (> 75 ppm). The nanowire sensor has been further integrated into a handheld breath testing prototype, the Ketowhistle, which can successfully detect different ranges of acetone concentrations in simulated breath. The Ketowhistle demonstrates immediate potential for non-invasive ketone testing and monitoring for persons living with diabetes, in particular for DKA prevention

    Axial p-n junction design and characterization for InP nanowire array solar cells

    Get PDF
    In this work, InP nanowire (NW) array solar cells with different axial p‐i‐n junction designs were investigated. The optical properties of the different NW structures were characterized through a series of microphotoluminescence measurements to extract important material parameters such as minority carrier lifetimes and internal quantum efficiencies. A glancing angle sputtering deposition technique has been developed to enable a direct visualization of the p‐n junctions in the vertical array of InP NW solar cells (NWSCs) using electron beam‐induced current (EBIC) technique. Based on EBIC and electrical simulation, it is found that the background doping in NWSC significantly affects the junction position. By modifying the junction design, the width and position of the p‐n junction can be varied effectively. By employing a p‐p−‐n structure, a high junction position (>1 μm from the substrate) and wide depletion width have been achieved as confirmed by EBIC measurement. Moreover, the NW growth substrate does not show any influence on the device behavior due to the fully decoupled junction position, indicating a promising structural design for future development of high‐performance, low‐cost flexible NW devices

    Interhospital Transfer Before Thrombectomy Is Associated With Delayed Treatment and Worse Outcome in the STRATIS Registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke).

    Get PDF
    BACKGROUND: Endovascular treatment with mechanical thrombectomy (MT) is beneficial for patients with acute stroke suffering a large-vessel occlusion, although treatment efficacy is highly time-dependent. We hypothesized that interhospital transfer to endovascular-capable centers would result in treatment delays and worse clinical outcomes compared with direct presentation. METHODS: STRATIS (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke) was a prospective, multicenter, observational, single-arm study of real-world MT for acute stroke because of anterior-circulation large-vessel occlusion performed at 55 sites over 2 years, including 1000 patients with severe stroke and treated within 8 hours. Patients underwent MT with or without intravenous tissue plasminogen activator and were admitted to endovascular-capable centers via either interhospital transfer or direct presentation. The primary clinical outcome was functional independence (modified Rankin Score 0-2) at 90 days. We assessed (1) real-world time metrics of stroke care delivery, (2) outcome differences between direct and transfer patients undergoing MT, and (3) the potential impact of local hospital bypass. RESULTS: A total of 984 patients were analyzed. Median onset-to-revascularization time was 202.0 minutes for direct versus 311.5 minutes for transfer patients ( CONCLUSIONS: In this large, real-world study, interhospital transfer was associated with significant treatment delays and lower chance of good outcome. Strategies to facilitate more rapid identification of large-vessel occlusion and direct routing to endovascular-capable centers for patients with severe stroke may improve outcomes. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02239640

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore