4 research outputs found

    High Frame Rate Ultrasound Velocimetry of Fast Blood Flow Dynamics

    Get PDF
    In this thesis we develop and validate high frame rate ultrasound sequences for use with echo-particle image velocimetry (in 2D and 3D), with the aim of measuring the high velocity blood flow patterns in the left ventricle and abdominal aorta

    Native blood speckle vs ultrasound contrast agent for particle image velocimetry with ultrafast ultrasound - In vitro experiments

    Get PDF
    Ultrafast contrast enhanced ultrasound, combined with echo particle image velocimetry (ePIV), can provide accurate, multidimensional hemodynamic flow field measurement. However, the use of ultrasound contrast agent (UCA) still prevents this method from becoming a truly versatile and non-invasive diagnostic tool. In this study, we investigate the use of native blood instead of UCA backscatter for ePIV measurements and compare their accuracy in vitro. Additionally, the effect of measurement depth is experimentally assessed. Blood mimicking fluid (BMF) was pumped through a 10 mm diameter tube producing parabolic flow profiles, adding UCA in the case of contrast imaging. Plane wave imaging at 5000 framesper-second was performed with a Verasonics Vantage system and a linear array. The tube was imaged at three different depths: 25, 50 and 100 mm. Singular value decomposition (SVD) was assessed for clutter suppression against mean background subtraction. PIVlab was used as a PIV implementation. With SVD, BMF provided almost equal ePIV accuracy as UCA, except at 100 mm depth where UCA provided better accuracy. Use of clutter suppression greatly improved ePIV results, but minimal differences in ePIV accuracy were noted between mean and SVD filtered groups (BMF or UCA). Accuracy decreased with increasing depth, likely due to reduced elevation resolution, resulting in out-of-plane smoothing of velocity gradients

    High Frame Rate Ultrasound Particle Image Velocimetry for Estimating High Velocity Flow Patterns in the Left Ventricle

    Get PDF
    Echocardiographic determination of multi-component blood flow dynamics in the left ventricle remains a challenge. In this study we compare contrast enhanced, high frame rate (1000 fps) echo particle image velocimetry (ePIV) against optical particle image velocimetry (oPIV, gold standard), in a realistic left ventricular phantom. We find that ePIV compares well to oPIV, even for the high velocity inflow jet (normalized RMSE = 9 ±1%). Additionally, we perform the method of Proper Orthogonal Decomposition, to better qualify and quantify the differences between the two modalities. We show that ePIV and oPIV resolve very similar flow structures, especially for the lowest order mode with a cosine similarity index of 86%. The co

    Optimization of Microbubble Concentration and Acoustic Pressure for Left Ventricular High-Frame-Rate EchoPIV in Patients

    No full text
    High-frame-rate (HFR) echo-particle image velocimetry (echoPIV) is a promising tool for measuring intracardiac blood flow dynamics. In this study, we investigate the optimal ultrasound contrast agent (UCA: SonoVue) infusion rate and acoustic output to use for HFR echoPIV (PRF = 4900 Hz) in the left ventricle (LV) of patients. Three infusion rates (0.3, 0.6, and 1.2 ml/min) and five acoustic output amplitudes (by varying transmit voltage: 5, 10, 15, 20, and 30 V - corresponding to mechanical indices of 0.01, 0.02, 0.03, 0.04, and 0.06 at 60-mm depth) were tested in 20 patients admitted for symptoms of heart failure. We assess the accuracy of HFR echoPIV against pulsed-wave Doppler acquisitions obtained for mitral inflow and aortic outflow. In terms of image quality, the 1.2-ml/min infusion rate provided the highest contrast-to-background ratio (CBR) (3-dB improvement over 0.3 ml/min). The highest acoustic output tested resulted in the lowest CBR. Increased acoustic output also resulted in increased microbubble disruption. For the echoPIV results, the 1.2-ml/min infusion rate provided the best vector quality and accuracy; mid-range acoustic outputs (corresponding to 15-20-V transmit voltages) provided the best agreement with the pulsed-wave Doppler. Overall, the highest infusion rate (1.2 ml/min) and mid-range acoustic output amplitudes provided the best image quality and echoPIV results. </p
    corecore