312 research outputs found

    Sequence dependent effect of paclitaxel on gemcitabine metabolism in relation to cell cycle and cytotoxicity in non-small-cell lung cancer cell lines

    Get PDF
    Gemcitabine and paclitaxel are active agents in the treatment of non-small-cell lung cancer (NSCLC). To optimize treatment drug combinations, simultaneously and 4 and 24 h intervals, were studied using DNA flow cytometry and multiple drug effect analysis in the NSCLC cell lines H460, H322 and Lewis Lung. All combinations resulted in comparable cytotoxicity, varying from additivity to antagonism (combination index: 1.0–2.6). Gemcitabine caused a S (48%) and G1 (64%) arrest at IC-50 and 10 × IC-50 concentrations, respectively. Paclitaxel induced G2/M arrest (70%) which was maximal within 24 h at 10 × IC-50. Simultaneous treatment increased S-phase arrest, while at the 24 h interval after 72 h the first drug seemed to dominate the effect. Apoptosis was more pronounced when paclitaxel preceded gemcitabine (20% for both intervals) as compared to the reverse sequence (8%, P = 0.173 for the 4 h and 12%, P = 0.051 for the 24 h time interval). In H460 cells, paclitaxel increased 2-fold the accumulation of dFdCTP, the active metabolite of gemcitabine, in contrast to H322 cells. Paclitaxel did not affect deoxycytidine kinase levels, but ribonucleotide levels increased possibly explaining the increase in dFdCTP. Paclitaxel did not affect gemcitabine incorporation into DNA, but seemed to increase incorporation into RNA. Gemcitabine almost completely inhibited DNA synthesis in both cell lines (70–89%), while paclitaxel had a minor effect and did not increase that of gemcitabine. In conclusion, various gemcitabine–paclitaxel combinations did not show sequence dependent cytotoxic effects; all combinations were not more than additive. However, since paclitaxel increased dFdCTP accumulation, gemcitabine incorporation into RNA and the apoptotic index, the administration of paclitaxel prior to gemcitabine might be favourable as compared to reversed sequences. © 2000 Cancer Research Campaig

    Expression of amphetamine sensitization is associated with recruitment of a reactive neuronal population in the nucleus accumbens core

    Get PDF
    Rationale: Repeated exposure to psychostimulant drugs causes a long-lasting increase in the psychomotor and reinforcing effects of these drugs and an array of neuroadaptations. One such alteration is a hypersensitivity of striatal activity such that a low dose of amphetamine in sensitized animals produces dorsal striatal activation patterns similar to acute treatment with a high dose of amphetamine. Objectives: To extend previous findings of striatal hypersensitivity with behavioral observations and with cellular activity in the nucleus accumbens and prefrontal cortex in sensitized animals. Materials and methods: Rats treated acutely with 0, 1, 2.5, or 5 mg/kg i.p. amphetamine and sensitized rats challenged with 1 mg/kg i.p. amphetamine were scored for stereotypy, rearing, and grooming, and locomotor activity recorded. c-fos positive nuclei were quantified in the nucleus accumbens and prefrontal cortex after expression of sensitization with 1 mg/kg i.p. amphetamine. Results: Intense stereotypy was seen in animals treated acutely with 5 mg/kg amphetamine, but not in the sensitized group treated with 1 mg/kg amphetamine. The c-fos response to amphetamine in the accumbens core was augmented in amphetamine-pretreated animals with a shift in the distribution of optical density, while no effect of sensitization was seen in the nucleus accumbens shell or prefrontal cortex. Conclusions A lack of stereotypy in the sensitized group indicates a dissociation of behavioral responses to amphetamine and striatal immediate-early gene activation patterns. The increase in c-fos positive nuclei and shift in the distribution of optical density observed in the nucleus accumbens core suggests recruitment of a new population of neurons during expression of sensitization

    PepCyber:P∼PEP: a database of human protein–protein interactions mediated by phosphoprotein-binding domains

    Get PDF
    Phosphoprotein-binding domains (PPBDs) mediate many important cellular and molecular processes. Ten PPBDs have been known to exist in the human proteome, namely, 14-3-3, BRCT, C2, FHA, MH2, PBD, PTB, SH2, WD-40 and WW. PepCyber:P∼PEP is a newly constructed database specialized in documenting human PPBD-containing proteins and PPBD-mediated interactions. Our motivation is to provide the research community with a rich information source emphasizing the reported, experimentally validated data for specific PPBD–PPEP interactions. This information is not only useful for designing, comparing and validating the relevant experiments, but it also serves as a knowledge-base for computationally constructing systems signaling pathways and networks. PepCyber:P∼PEP is accessible through the URL, http://www.pepcyber.org/PPEP/. The current release of the database contains 7044 PPBD-mediated interactions involving 337 PPBD-containing proteins and 1123 substrate proteins
    • …
    corecore