4 research outputs found

    Pamphlet to Accompany Geologic Map GMC-34: Geologic Map of the O’Neill 1º x 2º Quadrangle, Nebraska, with Configuration Maps of Surfaces of Formations

    Get PDF
    This map is necessarily generalized. It is based primarily on data from 7.5’ surficial geologic quadrangle maps of the map area prepared by the authors principally from 1991 to 2000, from Voorhies (unpub. data, 1974), as well as data from test-hole drilling done across the quadrangle by the Conservation and Survey Division, University of Nebraska, and its cooperators over many years since the 1930s. For more detailed information, consult the geologic data files of the Conservation and Survey Division, School of Natural Resources, University of Nebraska-Lincoln. The quadrangle is mostly covered by vegetation and Holocene sediments. Limited good exposures of older sediments and bedrock occur usually in road cuts, in quarry and pit excavations, on valley sides, on stream and river cut banks, and in isolated erosional remnants on uplands. Users of this map should remember that the scale of the map is small and allows only a general picture of the geology of the quadrangle to be depicted. Users should check with the authors regarding specific sites and, if necessary, do field checks of these sites. As new data become available the authors intend to update the data sets used in preparation of this quadrangle text and maps and to issue refined versions, if necessary. The earliest geologic map that included part of the study area was published by Charles Lyell in 1845 (Diffendal, 1993). Other geologic maps at different scales that include all or parts of the map area are by Darton (1899, 1905), Condra (1908), Schulte (1952), Mendenhall (1953), Lampshire (1956), Burchett (1986), Weeks and Gutentag, (1981), Weeks and others (1988), Swinehart and others (1994), and Diffendal and Voorhies (1994). Geologic maps of adjacent areas in Nebraska and South Dakota include Burchett and others (1975), Burchett and others (1988), Diffendal (1991), and Souders (2000) for Nebraska and Stevenson and Carlson (1950, 1951), Baker and others (1952), Collins and French (1958), Schoon and Sevon (1958), Stevenson and others (1958), and Stevenson and others (1959) for parts of South Dakota. Detailed groundwater investigations and associated stratigraphic test drilling (of parts or all of the map area) were done by Darton (1905), Condra (1908), Reed (1944), Keech and Schreurs (1953, 1954), Cronin and Newport (1956), Reed (1957), Smith (1958), Newport (1959), Souders and Shaffer (1969), Souders (1976), Gutentag and Weeks (1980), Luckey and others (1981), Lawton and Hiergesell (1988), Weeks and others (1988), Pierce (1989), Rahn and David (1989), Burchett and Smith (1992), and Lackey and others (1995, 1998a, 1998b, 2000)

    GEOLOGIC MAP OF THE O\u27NEILL 1º X 2º QUADRANGLE, NEBRASKA, WITH CONFIGURATION MAPS OF SURFACES OF FORMATIONS

    Get PDF
    SCALE 1:250,000 CONTOUR INTERVAL 200 FEET Geology mapped principally from 1991-2000 by RFD, M.RV, E.JV, H. LG , and C.LT Editing and layout by R.F. Diffendal, Jr. and D. Ebbeka Map production by J. Nothwehr and L. Howard Revised slightly 6 January 2009, 20 July 2010, 5 October 2010, 10 September 2012

    Pamphlet to Accompany Geologic Map GMC-34: Geologic Map of the O’Neill 1º x 2º Quadrangle, Nebraska, with Configuration Maps of Surfaces of Formations

    Get PDF
    This map is necessarily generalized. It is based primarily on data from 7.5’ surficial geologic quadrangle maps of the map area prepared by the authors principally from 1991 to 2000, from Voorhies (unpub. data, 1974), as well as data from test-hole drilling done across the quadrangle by the Conservation and Survey Division, University of Nebraska, and its cooperators over many years since the 1930s. For more detailed information, consult the geologic data files of the Conservation and Survey Division, School of Natural Resources, University of Nebraska-Lincoln. The quadrangle is mostly covered by vegetation and Holocene sediments. Limited good exposures of older sediments and bedrock occur usually in road cuts, in quarry and pit excavations, on valley sides, on stream and river cut banks, and in isolated erosional remnants on uplands. Users of this map should remember that the scale of the map is small and allows only a general picture of the geology of the quadrangle to be depicted. Users should check with the authors regarding specific sites and, if necessary, do field checks of these sites. As new data become available the authors intend to update the data sets used in preparation of this quadrangle text and maps and to issue refined versions, if necessary. The earliest geologic map that included part of the study area was published by Charles Lyell in 1845 (Diffendal, 1993). Other geologic maps at different scales that include all or parts of the map area are by Darton (1899, 1905), Condra (1908), Schulte (1952), Mendenhall (1953), Lampshire (1956), Burchett (1986), Weeks and Gutentag, (1981), Weeks and others (1988), Swinehart and others (1994), and Diffendal and Voorhies (1994). Geologic maps of adjacent areas in Nebraska and South Dakota include Burchett and others (1975), Burchett and others (1988), Diffendal (1991), and Souders (2000) for Nebraska and Stevenson and Carlson (1950, 1951), Baker and others (1952), Collins and French (1958), Schoon and Sevon (1958), Stevenson and others (1958), and Stevenson and others (1959) for parts of South Dakota. Detailed groundwater investigations and associated stratigraphic test drilling (of parts or all of the map area) were done by Darton (1905), Condra (1908), Reed (1944), Keech and Schreurs (1953, 1954), Cronin and Newport (1956), Reed (1957), Smith (1958), Newport (1959), Souders and Shaffer (1969), Souders (1976), Gutentag and Weeks (1980), Luckey and others (1981), Lawton and Hiergesell (1988), Weeks and others (1988), Pierce (1989), Rahn and David (1989), Burchett and Smith (1992), and Lackey and others (1995, 1998a, 1998b, 2000)

    Genome-scale CRISPR screening reveals that C3aR signaling is critical for rapid capture of fungi by macrophages.

    No full text
    The fungal pathogen Histoplasma capsulatum (Hc) invades, replicates within, and destroys macrophages. To interrogate the molecular mechanisms underlying this interaction, we conducted a host-directed CRISPR-Cas9 screen and identified 361 genes that modify macrophage susceptibility to Hc infection, greatly expanding our understanding of host gene networks targeted by Hc. We identified pathways that have not been previously implicated in Hc interaction with macrophages, including the ragulator complex (involved in nutrient stress sensing), glycosylation enzymes, protein degradation machinery, mitochondrial respiration genes, solute transporters, and the ER membrane complex (EMC). The highest scoring protective hits included the complement C3a receptor (C3aR), a G-protein coupled receptor (GPCR) that recognizes the complement fragment C3a. Although it is known that complement components react with the fungal surface, leading to opsonization and release of small peptide fragments such as C3a, a role for C3aR in macrophage interactions with fungi has not been elucidated. We demonstrated that whereas C3aR is dispensable for macrophage phagocytosis of bacteria and latex beads, it is critical for optimal macrophage capture of pathogenic fungi, including Hc, the ubiquitous fungal pathogen Candida albicans, and the causative agent of Valley Fever Coccidioides posadasii. We showed that C3aR localizes to the early phagosome during Hc infection where it coordinates the formation of actin-rich membrane protrusions that promote Hc capture. We also showed that the EMC promotes surface expression of C3aR, likely explaining its identification in our screen. Taken together, our results provide new insight into host processes that affect Hc-macrophage interactions and uncover a novel and specific role for C3aR in macrophage recognition of fungi
    corecore