9 research outputs found
Revising incomplete attitudes
Bayesian models typically assume that agents are rational, logically omniscient and opinionated. The last of these has little descriptive or normative appeal, however, and limits our ability to describe how agents make up their minds (as opposed to changing them) or how they can suspend or withdraw their opinions. To address these limitations this paper represents the attitudinal states of non-opinionated agents by sets of (permissible) probability and desirability functions. Several basic ways in which such states of mind can be changed are then characterised and compared with those found in AGM style models of attitude revision. Finally these models are employed to describe how agents make up their mind when deliberating
Algorithms for dempster-shafer theory
The method of reasoning with uncertain information known as Dempster-Shafer theory arose from the reinterpretation and development of work of Arthur Dempster [Dempster, 67; 68] by Glenn Shafer in his book a mathematical theory of evidence [Shafer, 76], and further publications e.g., [Shafer, 81; 90]. More recen