79 research outputs found
Is the inflammasome a potential therapeutic target in renal disease?
The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases
Sympatho-renal axis in chronic disease
Essential hypertension, insulin resistance, heart failure, congestion, diuretic resistance, and functional renal disease are all characterized by excessive central sympathetic drive. The contribution of the kidney’s somatic afferent nerves, as an underlying cause of elevated central sympathetic drive, and the consequences of excessive efferent sympathetic signals to the kidney itself, as well as other organs, identify the renal sympathetic nerves as a uniquely logical therapeutic target for diseases linked by excessive central sympathetic drive. Clinical studies of renal denervation in patients with resistant hypertension using an endovascular radiofrequency ablation methodology have exposed the sympathetic link between these conditions. Renal denervation could be expected to simultaneously affect blood pressure, insulin resistance, sleep disorders, congestion in heart failure, cardiorenal syndrome and diuretic resistance. The striking epidemiologic evidence for coexistence of these disorders suggests common causal pathways. Chronic activation of the sympathetic nervous system has been associated with components of the metabolic syndrome, such as blood pressure elevation, obesity, dyslipidemia, and impaired fasting glucose with hyperinsulinemia. Over 50% of patients with essential hypertension are hyperinsulinemic, regardless of whether they are untreated or in a stable program of treatment. Insulin resistance is related to sympathetic drive via a bidirectional mechanism. In this manuscript, we review the data that suggests that selective impairment of renal somatic afferent and sympathetic efferent nerves in patients with resistant hypertension both reduces markers of central sympathetic drive and favorably impacts diseases linked through central sympathetics—insulin resistance, heart failure, congestion, diuretic resistance, and cardiorenal disorders
Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension Durability of Blood Pressure Reduction Out to 24 Months
Renal sympathetic hyperactivity is seminal in the maintenance and progression of hypertension. Catheter-based renal sympathetic denervation has been shown to significantly reduce blood pressure (BP) in patients with hypertension. Durability of effect beyond 1 year using this novel technique has never been reported. A cohort of 45 patients with resistant hypertension (systolic BP GT = 160 mm Hg on GT = 3 antihypertension drugs, including a diuretic) has been originally published. Herein, we report longer-term follow-up data on these and a larger group of similar patients subsequently treated with catheter-based renal denervation in a nonrandomized manner. We treated 153 patients with catheter-based renal sympathetic denervation at 19 centers in Australia, Europe, and the United States. Mean age was 57 +/- 11 years, 39% were women, 31% were diabetic, and 22% had coronary artery disease. Baseline values included mean office BP of 176/98 +/- 17/15 mm Hg, mean of 5 antihypertension medications, and an estimated glomerular filtration rate of 83 +/- 20 mL/min per 1.73 m(2). The median time from first to last radiofrequency energy ablation was 38 minutes. The procedure was without complication in 97% of patients (149 of 153). The 4 acute procedural complications included 3 groin pseudoaneurysms and 1 renal artery dissection, all managed without further sequelae. Postprocedure office BPs were reduced by 20/10, 24/11, 25/11, 23/11, 26/14, and 32/14 mm Hg at 1, 3, 6, 12, 18, and 24 months, respectively. In conclusion, in patients with resistant hypertension, catheter-based renal sympathetic denervation results in a substantial reduction in BP sustained out to GT = 2 years of follow-up, without significant adverse events. (Hypertension. 2011;57:911-917.
Die therapeutische Beeinflussung einer experimentellen Nephritis durch homologe Nierenmitochondrien
Peer Reviewe
Identification of SagA as a novel vaccine target for the prevention of Enterococcus faecium infections
Infections caused by multiresistant Gram-positive bacteria represent a major health burden in the community as well as in hospitalized patients. Enterococci, especially Enterococcus faecium, are well-known pathogens of hospitalized patients and are frequently linked with resistance against multiple antibiotics, which compromises effective therapy. Rabbit immune serum raised against heat-killed E. faecium E155, a HiRECC clone, was used in an opsonophagocytic assay, an inhibition assay and a mouse bacteraemia model to identify targets of opsonic and protective antibodies. Serum against whole heat-killed bacteria was opsonic and recognized a protein of about 72 kDa that was abundantly secreted. This protein, identified as SagA by LC-ES-MS/MS, was expressed in Escherichia coli and purified. Rabbit serum raised against the purified protein showed opsonic killing activity that was inhibited by almost 100 % using 100 µg purified protein ml−1. In a mouse bacteraemia model, a statistically significant reduction of the colony counts in blood was shown with immune rabbit serum compared with preimmune serum using the homologous and a heterologous vancomycin-resistant enterococci (VRE) strain. These results indicate that SagA could be used as a promising vaccine target to treat and/or prevent VRE bacteraemia.</jats:p
Isolation and Enrichment of Glomeruli Using Laser Microdissection and Magnetic Microbeads for Proteomic Analysis
- …
