25 research outputs found

    Dynamics and consequences of nutrition-related microbial dysbiosis in early life: study protocol of the VITERBI GUT project

    Get PDF
    INTRODUCTION: Early life under- and overnutrition (jointly termed malnutrition) is increasingly recognized as an important risk factor for adult obesity and metabolic syndrome, a diet-related cluster of conditions including high blood sugar, fat and cholesterol. Nevertheless, the exact factors linking early life malnutrition with metabolic syndrome remain poorly characterized. We hypothesize that the microbiota plays a crucial role in this trajectory and that the pathophysiological mechanisms underlying under- and overnutrition are, to some extent, shared. We further hypothesize that a "dysbiotic seed microbiota" is transmitted to children during the birth process, altering the children's microbiota composition and metabolic health. The overall objective of this project is to understand the precise causes and biological mechanisms linking prenatal or early life under- or overnutrition with the predisposition to develop overnutrition and/or metabolic disease in later life, as well as to investigate the possibility of a dysbiotic seed microbiota inheritance in the context of maternal malnutrition. METHODS/DESIGN: VITERBI GUT is a prospective birth cohort allowing to study the link between early life malnutrition, the microbiota and metabolic health. VITERBI GUT will include 100 undernourished, 100 normally nourished and 100 overnourished pregnant women living in Vientiane, Lao People's Democratic Republic (PDR). Women will be recruited during their third trimester of pregnancy and followed with their child until its second birthday. Anthropometric, clinical, metabolic and nutritional data are collected from both the mother and the child. The microbiota composition of maternal and child's fecal and oral samples as well as maternal vaginal and breast milk samples will be determined using amplicon and shotgun metagenomic sequencing. Epigenetic modifications and lipid profiles will be assessed in the child's blood at 2 years of age. We will investigate for possible associations between metabolic health, epigenetics, and microbial changes. DISCUSSION: We expect the VITERBI GUT project to contribute to the emerging literature linking the early life microbiota, epigenetic changes and growth/metabolic health. We also expect this project to give new (molecular) insights into the mechanisms linking malnutrition-induced early life dysbiosis and metabolic health in later life, opening new avenues for microbiota-engineering using microbiota-targeted interventions

    Whole-genome sequencing for One Health surveillance of antimicrobial resistance in conflict zones: a case study of Salmonella spp. and Campylobacter spp. in the West Bank, Palestine

    Get PDF
    Antimicrobial resistance (AMR) is a critical global concern driven by the overuse, misuse, and/or usage of inadequate antibiotics on humans, animals' agriculture, and as a result of contaminated environments. This study is the first One Health survey in the Middle East that incorporated whole-genome sequencing (WGS) to examine the spread of AMR in Campylobacter spp. and Salmonella spp. This cross-sectional study was conducted to examine the role of AMR at the human-animal-environmental interface and was performed in Ramallah/Al-Bireh and Jerusalem governorates of the central West Bank, Palestine. In 2021 and 2022, a total of 592 samples were collected and analyzed. From a total of 65 Campylobacter jejuni and 19 Salmonella spp. isolates, DNA was extracted for WGS using Oxford Nanopore Technologies MinION platform. We found that the dominant serotypes of C. jejuni and Salmonella enterica were present in chicken manure, chicken meat sold in markets, and feces of asymptomatic farm workers, with high genetic similarities between the isolates regardless of origin. Additionally, our results showed rapid strain turnover in C. jejuni from the same sites between 2021 and 2022. Most of the positive Salmonella spp. samples were multidrug-resistant (MDR) S. enterica serovar Muenchen carrying the plasmid of emerging S. infantis (pESI) megaplasmid, conferring resistance to multiple antibiotics. Our findings highlight the spread of MDR foodborne pathogens from animals to humans through the food chain, emphasizing the importance of a One Health approach that considers the interconnections between human, animal, and environmental health. IMPORTANCE Prior to this study, there existed hardly an integrated human-animal-environmental study of Salmonellosis and Campylobacteriosis and related AMR in Middle Eastern countries. The few existing studies lack robust epidemiological study designs, adequate for a One Health approach, and did not use WGS to determine the circulating serotypes and their AMR profiles. Civil unrest and war in Middle Eastern countries drive AMR because of the breakdown of public health and food security services. This study samples simultaneously humans, animals, and the environment to comprehensively investigate foodborne pathogens in the broiler chicken production chain in Palestine using WGS. We show that identical serotypes of C. jejuni and S. enterica can be found in samples from chicken farms, chicken meat sold in markets, and asymptomatic broiler chicken production workers. The most striking feature is the rapid dynamic of change in the genetic profile of the detected species in the same sampling locations. The majority of positive Salmonella spp. samples are MDR S. enterica serovar Muenchen isolates carrying the pESI megaplasmid. The results demonstrate a close relationship between the S. enterica serovar Muenchen isolates found in our sample collection and those responsible for 40% of all clinical Salmonella spp. isolates in Israel as previously reported, with a sequence identity of over 99.9%. These findings suggest the transboundary spread of MDR S. enterica serovar Muenchen strains from animals to humans through the food chain. The study underscores the importance of combining integrated One Health studies with WGS for detecting environmental-animal-human transmission of foodborne pathogens that could not be detected otherwise. This study showcases the benefits of integrated environmental-animal-human sampling and WGS for monitoring AMR. Environmental samples, which may be more accessible in conflict-torn places where monitoring systems are limited and regulations are weak, can provide an effective AMR surveillance solution. WGS of bacterial isolates provides causal inference of the distribution and spread of bacterial serotypes and AMR in complex social-ecological systems. Consequently, our results point toward the expected benefits of operationalizing a One Health approach through closer cooperation of public and animal health and food safety authorities

    Prevalence and associated risk factors of intestinal parasitic infections among children in pastoralist and agro-pastoralist communities in the Adadle woreda of the Somali Regional State of Ethiopia

    Get PDF
    BACKGROUND: Intestinal parasitic infections (IPIs) can cause illness, morbidity, and occasional mortality in children. Agro-pastoralist and pastoralist children in the Somali Regional State of Ethiopia (ESRS) are especially at risk for IPIs, as access to safe water, sanitation, and health services is lacking. Minimal data on the prevalence of IPIs and associated risk factors exists in this region. METHODOLOGY: We assessed the prevalence of IPIs and associated risk factors during the wet season from May-June 2021 in 366 children aged 2 to 5 years in four agro-pastoralist and four pastoralist kebeles (wards) in Adadle woreda (district) of the Shebelle zone, ESRS. Household information, anthropometric measurements, and stool samples were obtained from included children. Parasites were identified microscopically using Kato-Katz and direct smear methods. Risk factors were assessed using general estimating equation models accounting for clustering. PRINCIPAL FINDINGS: Overall prevalence of IPIs was 35%: 30.6% for single infections and 4.4% for poly-parasitic infections. Intestinal protozoan prevalence was 24.9%: 21.9% Giardia intestinalis, and 3.0% Entamoeba spp.. Intestinal helminth prevalence was 14.5%: 12.8% Ascaris lumbricoides, 1.4% hookworm (Ancylostoma duodenale /Necator americanus.), and 0.3% Hymenolepis nana. G. intestinalis infection was associated with drinking water sourced from the river (aOR 15.6, 95%CI 6.84, 35.4) and from collected rainwater (aOR 9.48, 95%CI 3.39, 26.5), with toilet sharing (aOR 2.93, 95%CI 1.36, 6.31) and with household ownership of cattle (1-5 cattle: aOR 1.65, 95%CI 1.13, 2.41; 6+ cattle: aOR 2.07, 95%CI 1.33, 3.21) and chickens (aOR 3.80, 95%CI 1.77, 8.17). A. lumbricoides infection was associated with children 36 to 47 months old (aOR 1.92, 95%CI 1.03, 3.58). CONCLUSIONS/SIGNIFICANCE: Improving access to safe water, sanitation, and hygiene services in Adadle and employing a One Health approach would likely improve the health of children living in (agro-) pastoralist communities in Adadle and the ESRS; however, further studies are required

    Stunted children display ectopic small intestinal colonization by oral bacteria, which cause lipid malabsorption in experimental models

    Get PDF
    Environmental enteric dysfunction (EED) is an inflammatory syndrome postulated to contribute to stunted child growth and to be associated with intestinal dysbiosis and nutrient malabsorption. However, the small intestinal contributions to EED remain poorly understood. This study aimed to assess changes in the proximal and distal intestinal microbiota in the context of stunting and EED and to test for a causal role of these bacterial isolates in the underlying pathophysiology. We performed a cross-sectional study in two African countries recruiting roughly 1,000 children aged 2 to 5 years and assessed the microbiota in the stomach, duodenum, and feces. Upper gastrointestinal samples were obtained from stunted children and stratified according to stunting severity. Fecal samples were collected. We then investigated the role of clinical isolates in EED pathophysiology using tissue culture and animal models. We find that small intestinal bacterial overgrowth (SIBO) is extremely common (>80%) in stunted children. SIBO is frequently characterized by an overgrowth of oral bacteria, leading to increased permeability and inflammation and to replacement of classical small intestinal strains. These duodenal bacterial isolates decrease lipid absorption in both cultured enterocytes and mice, providing a mechanism by which they may exacerbate EED and stunting. Further, we find a specific fecal signature associated with the EED markers fecal calprotectin and alpha-antitrypsin. Our study shows a causal implication of ectopic colonization of oral bacterial isolated from the small intestine in nutrient malabsorption and gut leakiness in vitro. These findings have important therapeutic implications for modulating the microbiota through microbiota-targeted interventions

    Intestinal microbiota research from a global perspective.

    Get PDF
    The intestinal microbiota plays a crucial role in health and changes in its composition are linked with major global human diseases. Fully understanding what shapes the human intestinal microbiota composition and knowing ways of modulating the composition are critical for promotion of life-course health, combating diseases, and reducing global health disparities. We aim to provide a foundation for understanding what shapes the human intestinal microbiota on an individual and global scale, and how interventions could utilize this information to promote life-course health and reduce global health disparities. We briefly review experiences within the first 1,000 days of life and how long-term exposures to environmental elements or geographic specific cultures have lasting impacts on the intestinal microbiota. We also discuss major public health threats linked to the intestinal microbiota, including antimicrobial resistance and disappearing microbial diversity due to globalization. In order to promote global health, we argue that the interplay of the larger ecosystem with intestinal microbiota research should be utilized for future research and urge for global efforts to conserve microbial diversity

    OPA

    No full text

    Systematic Review and Meta-Analysis of Integrated Studies on Salmonella and Campylobacter Prevalence, Serovar, and Phenotyping and Genetic of Antimicrobial Resistance in the Middle East-A One Health Perspective.

    Get PDF
    Background:Campylobacter and Salmonella are the leading causes of foodborne diseases worldwide. Recently, antimicrobial resistance (AMR) has become one of the most critical challenges for public health and food safety. To investigate and detect infections commonly transmitted from animals, food, and the environment to humans, a surveillance-response system integrating human and animal health, the environment, and food production components (iSRS), called a One Health approach, would be optimal. Objective: We aimed to identify existing integrated One Health studies on foodborne illnesses in the Middle East and to determine the prevalence, serovars, and antimicrobial resistance phenotypes and genotypes of Salmonella and Campylobacter strains among humans and food-producing animals. Methods: The databases Web of Science, Scopus, and PubMed were searched for literature published from January 2010 until September 2021. Studies meeting inclusion criteria were included and assessed for risk of bias. To assess the temporal and spatial relationship between resistant strains from humans and animals, a statistical random-effects model meta-analysis was performed. Results: 41 out of 1610 studies that investigated Campylobacter and non-typhoid Salmonella (NTS) in the Middle East were included. The NTS prevalence rates among human and food-producing animals were 9% and 13%, respectively. The Campylobacter prevalence rates were 22% in humans and 30% in food-producing animals. The most-reported NTS serovars were Salmonella Enteritidis and Salmonella Typhimurium, while Campylobacter jejuni and Campylobacter coli were the most prevalent species of Campylobacter. NTS isolates were highly resistant to erythromycin, amoxicillin, tetracycline, and ampicillin. C. jejuni isolates showed high resistance against amoxicillin, trimethoprim-sulfamethoxazole, nalidixic acid, azithromycin, chloramphenicol, ampicillin, tetracycline, and ciprofloxacin. The most prevalent Antimicrobial Resistance Genes (ARGs) in isolates from humans included tetO (85%), Class 1 Integrons (81%), blaOXA-61 (53%), and cmeB (51%), whereas in food-producing animals, the genes were tetO (77%), Class 1 integrons (69%), blaOXA-61 (35%), and cmeB (35%). The One Health approach was not rigorously applied in the Middle East countries. Furthermore, there was an uneven distribution in the reported data between the countries. Conclusion: More studies using a simultaneous approach targeting human, animal health, the environment, and food production components along with a solid epidemiological study design are needed to better understand the drivers for the emergence and spread of foodborne pathogens and AMR in the Middle East

    RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42

    Get PDF
    The pathogen Salmonella Typhimurium is a common cause of diarrhea and invades the gut tissue by injecting a cocktail of virulence factors into epithelial cells, triggering actin rearrangements, membrane ruffling and pathogen entry. One of these factors is SopE, a G-nucleotide exchange factor for the host cellular Rho GTPases Rac1 and Cdc42. How SopE mediates cellular invasion is incompletely understood. Using genome-scale RNAi screening we identified 72 known and novel host cell proteins affecting SopE-mediated entry. Follow-up assays assigned these 'hits' to particular steps of the invasion process; i.e., binding, effector injection, membrane ruffling, membrane closure and maturation of the Salmonella-containing vacuole. Depletion of the COPI complex revealed a unique effect on virulence factor injection and membrane ruffling. Both effects are attributable to mislocalization of cholesterol, sphingolipids, Rac1 and Cdc42 away from the plasma membrane into a large intracellular compartment. Equivalent results were obtained with the vesicular stomatitis virus. Therefore, COPI-facilitated maintenance of lipids may represent a novel, unifying mechanism essential for a wide range of pathogens, offering opportunities for designing new drugs
    corecore