38 research outputs found

    Emerging Concepts in Vector Development for Glial Gene Therapy: Implications for Leukodystrophies

    Get PDF
    Central Nervous System (CNS) homeostasis and function rely on intercellular synchronization of metabolic pathways. Developmental and neurochemical imbalances arising from mutations are frequently associated with devastating and often intractable neurological dysfunction. In the absence of pharmacological treatment options, but with knowledge of the genetic cause underlying the pathophysiology, gene therapy holds promise for disease control. Consideration of leukodystrophies provide a case in point; we review cell type – specific expression pattern of the disease – causing genes and reflect on genetic and cellular treatment approaches including ex vivo hematopoietic stem cell gene therapies and in vivo approaches using adeno-associated virus (AAV) vectors. We link recent advances in vectorology to glial targeting directed towards gene therapies for specific leukodystrophies and related developmental or neurometabolic disorders affecting the CNS white matter and frame strategies for therapy development in future

    Dual-function AAV gene therapy reverses late-stage Canavan disease pathology in mice

    Get PDF
    The leukodystrophy Canavan disease is a fatal white matter disorder caused by loss-of-function mutations of the aspartoacylase-encoding ASPA gene. There are no effective treatments available and experimental gene therapy trials have failed to provide sufficient amelioration from Canavan disease symptoms. Preclinical studies suggest that Canavan disease-like pathology can be addressed by either ASPA gene replacement therapy or by lowering the expression of the N-acetyl-L-aspartate synthesizing enzyme NAT8L. Both approaches individually prevent or even reverse pathological aspects in Canavan disease mice. Here, we combined both strategies and assessed whether intracranial adeno-associated virus-mediated gene delivery to a Canavan disease mouse model at 12 weeks allows for reversal of existing pathology. This was enabled by a single vector dual-function approach. In vitro and in vivo biopotency assessment revealed significant knockdown of neuronal Nat8l paired with robust ectopic aspartoacylase expression. Following nomination of the most efficient cassette designs, we performed proof-of-concept studies in post-symptomatic Aspa-null mice. Late-stage gene therapy resulted in a decrease of brain vacuoles and long-term reversal of all pathological hallmarks, including loss of body weight, locomotor impairments, elevated N-acetyl-L-aspartate levels, astrogliosis, and demyelination. These data suggest feasibility of a dual-function vector combination therapy, directed at replacing aspartoacylase with concomitantly suppressing N-acetyl-L-aspartate production, which holds potential to permanently alleviate Canavan disease symptoms and expands the therapeutic window towards a treatment option for adult subjects

    Targeted aspartoacylase gene therapy reverts Canavan disease

    No full text

    Australian scorpion Hormurus waigiensis venom fractions show broad bioactivity through modulation of bio-impedance and cytosolic calcium

    Get PDF
    Scorpion venoms are a rich source of bioactive molecules, but characterisation of toxin peptides affecting cytosolic Ca2+, central to cell signalling and cell death, is limited. We undertook a functional screening of the venom of the Australian scorpion Hormurus waigiensis to determine the breadth of Ca2+ mobilisation. A human embryonic kidney (HEK293) cell line stably expressing the genetically encoded Ca2+ reporter GCaMP5G and the rabbit type 1 ryanodine receptor (RyR1) was developed as a biosensor. Size-exclusion Fast Protein Liquid Chromatography separated the venom into 53 fractions, constituting 12 chromatographic peaks. Liquid chromatography mass spectroscopy identified 182 distinct molecules with 3 to 63 components per peak. The molecular weights varied from 258 Da—13.6 kDa, with 53% under 1 kDa. The majority of the venom chromatographic peaks (tested as six venom pools) were found to reversibly modulate cell monolayer bioimpedance, detected using the xCELLigence platform (ACEA Biosciences). Confocal Ca2+ imaging showed 9/14 peak samples, with molecules spanning the molecular size range, increased cytosolic Ca2+ mobilization. H. waigiensis venom Ca2+ activity was correlated with changes in bio-impedance, reflecting multi-modal toxin actions on cell physiology across the venom proteome

    Expression pattern of the aspartyl-tRNA synthetase DARS in the human brain

    No full text
    Translation of mRNA into protein is an evolutionarily conserved, fundamental process of life. A prerequisite for translation is the accurate charging of tRNAs with their cognate amino acids, a reaction catalyzed by specific aminoacyl-tRNA synthetases. One of these enzymes is the aspartyl-tRNA synthetase DARS, which pairs aspartate with its corresponding tRNA. Missense mutations of the gene encoding DARS result in the leukodystrophy hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL) with a distinct pattern of hypomyelination, motor abnormalities, and cognitive impairment. A thorough understanding of the DARS expression domains in the central nervous system is essential for the development of targeted therapies to treat HBSL. Here, we analyzed endogenous DARS expression on the mRNA and protein level in different brain regions and cell types of human post mortem brain tissue as well as in human stem cell derived neurons, oligodendrocytes, and astrocytes. DARS expression is significantly enriched in the cerebellum, a region affected in HBSL patients and important for motor control. Although obligatorily expressed in all cells, DARS shows a distinct expression pattern with enrichment in neurons but only low abundance in oligodendrocytes, astrocytes, and microglia. Our results reveal little homogeneity across the different cell types, largely matching previously published data in the murine brain. This human gene expression study will significantly contribute to the understanding of DARS gene function and HBSL pathology and will be instrumental for future development of animal models and targeted therapies. In particular, we anticipate high benefit from a gene replacement approach in neurons of HBSL mouse models, given the abundant endogenous DARS expression in this lineage cell

    Loss of Central Auditory Processing in a Mouse Model of Canavan Disease

    No full text
    <div><p>Canavan Disease (CD) is a leukodystrophy caused by homozygous null mutations in the gene encoding aspartoacylase (ASPA). ASPA-deficiency is characterized by severe psychomotor retardation, and excessive levels of the ASPA substrate N-acetylaspartate (NAA). ASPA is an oligodendrocyte marker and it is believed that CD has a central etiology. However, ASPA is also expressed by Schwann cells and ASPA-deficiency in the periphery might therefore contribute to the complex CD pathology. In this study, we assessed peripheral and central auditory function in the <i>Aspa<sup>lacZ/lacZ</sup></i> rodent model of CD using auditory brainstem response (ABR). Increased ABR thresholds and the virtual loss of waveform peaks 4 and 5 from <i>Aspa<sup>lacZ/lacZ</sup></i> mice, indicated altered central auditory processing in mutant mice compared with <i>Aspa<sup>wt/wt</sup></i> controls and altered central auditory processing. Analysis of ABR latencies recorded from <i>Aspa<sup>lacZ/lacZ</sup></i> mice revealed that the speed of nerve conduction was unchanged in the peripheral part of the auditory pathway, and impaired in the CNS. Histological analyses confirmed that ASPA was expressed in oligodendrocytes and Schwann cells of the auditory system. In keeping with our physiological results, the cellular organization of the cochlea, including the organ of Corti, was preserved and the spiral ganglion nerve fibres were normal in ASPA-deficient mice. In contrast, we detected substantial hypomyelination in the central auditory system of <i>Aspa<sup>lacZ/lacZ</sup></i> mice. In summary, our data suggest that the lack of ASPA in the CNS is responsible for the observed hearing deficits, while ASPA-deficiency in the cochlear nerve fibres is tolerated both morphologically and functionally.</p></div
    corecore