122 research outputs found

    Derivation of the particle dynamics from kinetic equations

    Full text link
    We consider the microscopic solutions of the Boltzmann-Enskog equation discovered by Bogolyubov. The fact that the time-irreversible kinetic equation has time-reversible microscopic solutions is rather surprising. We analyze this paradox and show that the reversibility or irreversibility property of the Boltzmann-Enskog equation depends on the considered class of solutions. If the considered solutions have the form of sums of delta-functions, then the equation is reversible. If the considered solutions belong to the class of continuously differentiable functions, then the equation is irreversible. Also, we construct the so called approximate microscopic solutions. These solutions are continuously differentiable and they are reversible on bounded time intervals. This analysis suggests a way to reconcile the time-irreversible kinetic equations with the time-reversible particle dynamics. Usually one tries to derive the kinetic equations from the particle dynamics. On the contrary, we postulate the Boltzmann-Enskog equation or another kinetic equation and treat their microscopic solutions as the particle dynamics. So, instead of the derivation of the kinetic equations from the microdynamics we suggest a kind of derivation of the microdynamics from the kinetic equations.Comment: 18 pages; some misprints have been corrected, some references have been adde

    Dressing the Giant Magnon II

    Get PDF
    We extend our earlier work by demonstrating how to construct classical string solutions describing arbitrary superpositions of scattering and bound states of dyonic giant magnons on S^5 using the dressing method for the SU(4)/Sp(2) coset model. We present a particular scattering solution which generalizes solutions found in hep-th/0607009 and hep-th/0607044 to the case of arbitrary magnon momenta. We compute the classical time delay for the scattering of two dyonic magnons carrying angular momenta with arbitrary relative orientation on the S^5.Comment: 13 pages, harvma

    Exact noncommutative solitons in p-adic strings and BSFT

    Full text link
    The tachyon field of p-adic string theory is made noncommutative by replacing ordinary products with noncommutative products in its exact effective action. The same is done for the boundary string field theory, treated as the p -> 1 limit of the p-adic string. Solitonic lumps corresponding to D-branes are obtained for all values of the noncommutative parameter theta. This is in contrast to usual scalar field theories in which the noncommutative solitons do not persist below a critical value of theta. As theta varies from zero to infinity, the solution interpolates smoothly between the soliton of the p-adic theory (respectively BSFT) to the noncommutative soliton.Comment: 1+14 pages (harvmac b), 1 eps figure, v2: references added, typos correcte

    Explicit Formulas for Neumann Coefficients in the Plane-Wave Geometry

    Get PDF
    We obtain explicit formulas for the Neumann coefficients and associated quantities that appear in the three-string vertex for type IIB string theory in a plane-wave background, for any value of the mass parameter mu. The derivation involves constructing the inverse of a certain infinite-dimensional matrix, in terms of which the Neumann coefficients previously had been written only implicitly. We derive asymptotic expansions for large mu and find unexpectedly simple results, which are valid to all orders in 1/mu. Using BMN duality, these give predictions for certain gauge theory quantities to all orders in the modified 't Hooft coupling lambda'. A specific example is presented.Comment: 28 pages, 2 figures, v2: reference added, new comments and appendix, typos fixed in eqs. (86) and (89

    Dynamics with Infinitely Many Derivatives: The Initial Value Problem

    Full text link
    Differential equations of infinite order are an increasingly important class of equations in theoretical physics. Such equations are ubiquitous in string field theory and have recently attracted considerable interest also from cosmologists. Though these equations have been studied in the classical mathematical literature, it appears that the physics community is largely unaware of the relevant formalism. Of particular importance is the fate of the initial value problem. Under what circumstances do infinite order differential equations possess a well-defined initial value problem and how many initial data are required? In this paper we study the initial value problem for infinite order differential equations in the mathematical framework of the formal operator calculus, with analytic initial data. This formalism allows us to handle simultaneously a wide array of different nonlocal equations within a single framework and also admits a transparent physical interpretation. We show that differential equations of infinite order do not generically admit infinitely many initial data. Rather, each pole of the propagator contributes two initial data to the final solution. Though it is possible to find differential equations of infinite order which admit well-defined initial value problem with only two initial data, neither the dynamical equations of p-adic string theory nor string field theory seem to belong to this class. However, both theories can be rendered ghost-free by suitable definition of the action of the formal pseudo-differential operator. This prescription restricts the theory to frequencies within some contour in the complex plane and hence may be thought of as a sort of ultra-violet cut-off.Comment: 40 pages, no figures. Added comments concerning fractional operators and the implications of restricting the contour of integration. Typos correcte

    Tachyon condensation in open-closed p-adic string theory

    Full text link
    We study a simple model of p-adic closed and open strings. It sheds some light on the dynamics of tachyon condensation for both types of strings. We calculate the effect of static and decaying D-brane configurations on the closed string background. For closed string tachyons we find lumps analogous to D-branes. By studying their fluctuation spectrum and the D-branes they admit, we argue that closed string lumps should be interpreted as spacetimes of lower dimensionality described by some noncritical p-adic string theory.Comment: 21 pages, 3 figures; v2: discussion of the fluctuations of the double lump substantially improve

    Mixed-symmetry massive fields in AdS(5)

    Full text link
    Free mixed-symmetry arbitrary spin massive bosonic and fermionic fields propagating in AdS(5) are investigated. Using the light-cone formulation of relativistic dynamics we study bosonic and fermionic fields on an equal footing. Light-cone gauge actions for such fields are constructed. Various limits of the actions are discussed.Comment: v3: 24 pages, LaTeX-2e; typos corrected, footnote 7 and 2 references added, published in Class. Quantum Gra

    Toward Open-Closed String Theoretical Description of Rolling Tachyon

    Full text link
    We consider how the time-dependent decay process of an unstable D-brane should be described in the full (quantum) open-closed string theory. It is argued that the system, starting from the unstable D-brane configuration, will evolve in time into the time-independent open string tachyon vacuum configuration which we assume to be finite, with the total energy conserved. As a concrete realization of this idea, we construct a toy model describing the open and closed string tachyons which admits such a time-dependent solution. The structure of our model has some resemblance to that of open-closed string field theory.Comment: 1+10 pages, 6 figures. v2: a reference adde
    • …
    corecore