29 research outputs found

    Tandem KH domains of Khd4 recognize AUACCC and are essential for regulation of morphology as well as pathogenicity in Ustilago maydis.

    No full text
    RNA-binding proteins constitute key factors of the post-transcriptional machinery. These regulatory proteins recognize specific elements within target transcripts to promote, for example, maturation, translation, or stability of mRNAs. In Ustilago maydis, evidence is accumulating that post-transcriptional processes are important to determine pathogenicity. Deletion of khd4, encoding a predicted RNA-binding protein with five K homology (KH) domains, causes aberrant cell morphology and reduced virulence. Here, we demonstrate that Khd4 recognizes the sequence AUACCC in vivo via its tandem KH domains 3 and 4. This sequence most likely functions as a regulatory RNA element in U. maydis, since it accumulates in 3' untranslated regions. Consistently, an independent mRNA expression profiling approach revealed that the binding motif is significantly enriched in transcripts showing altered expression levels in khd4 Delta strains. Since the vast majority of potential Khd4 target mRNAs exhibit increased amounts in deletion mutants, Khd4 might promote mRNA instability. Mutants that fail to bind AUACCC resemble deletion mutants, which exhibit altered cell morphology, disturbed filamentous growth, and severely reduced virulence. Hence, RNA binding is essential for function of Khd4, stressing the importance of post-transcriptional control in regulating morphology and pathogenicity

    The posttranscriptional machinery of Ustilago maydis.

    No full text
    Eukaryotic gene expression begins with transcription and maturation of mRNAs in the nucleus and ends with their translation and degradation in the cytoplasm. Here, we present an inventory of the posttranscriptional machinery of Ustilago maydis that is based on the recently sequenced genome and its comprehensive manual annotation. We used the detailed knowledge available for Saccharomyces cerevisiae and higher eukaryotes to predict posttranscriptional components in this plant pathogen. The comparison to S. cerevisiae revealed that most core components are shared. Both fungi belong to the small group of organisms lacking components of the RNAi machinery. However, a striking difference exists at the level of splicing. U. maydis harbors substantially more intron-containing genes and this correlates with the presence of numerous splice components with human orthologues that are absent or less conserved in S. cerevisiae. In particular, U. maydis contains three out of four core proteins of the exon junction complex, which marks spliced exons and is involved in cytoplasmic mRNA transport. In this context, it is also remarkable that the U. maydis genome displays components involved in microtubule- rather than actin-dependent mRNA transport. Thus, U. maydis might serve as an attractive model system to gain novel insights into posttranscriptional processes
    corecore