192 research outputs found
Cluster Persistence: a Discriminating Probe of Soap Froth Dynamics
The persistent decay of bubble clusters in coarsening two-dimensional soap
froths is measured experimentally as a function of cluster volume fraction.
Dramatically stronger decay is observed in comparison to soap froth models and
to measurements and calculations of persistence in other systems. The fraction
of individual bubbles that contain any persistent area also decays, implying
significant bubble motion and suggesting that T1 processes play an important
role in froth persistence.Comment: 5 pages, revtex, 4 eps figures. To appear in Europhys. Let
Inequivalence of ensembles in a system with long range interactions
We study the global phase diagram of the infinite range Blume-Emery-Griffiths
model both in the canonical and in the microcanonical ensembles. The canonical
phase diagram is known to exhibit first order and continuous transition lines
separated by a tricritical point. We find that below the tricritical point,
when the canonical transition is first order, the phase diagrams of the two
ensembles disagree. In this region the microcanonical ensemble exhibits energy
ranges with negative specific heat and temperature jumps at transition
energies. These results can be extended to weakly decaying nonintegrable
interactions.Comment: Revtex, 4 pages with 3 figures, submitted to Phys. Rev. Lett., e-mail
[email protected]
The electronic structure of amorphous silica: A numerical study
We present a computational study of the electronic properties of amorphous
SiO2. The ionic configurations used are the ones generated by an earlier
molecular dynamics simulations in which the system was cooled with different
cooling rates from the liquid state to a glass, thus giving access to
glass-like configurations with different degrees of disorder [Phys. Rev. B 54,
15808 (1996)]. The electronic structure is described by a tight-binding
Hamiltonian. We study the influence of the degree of disorder on the density of
states, the localization properties, the optical absorption, the nature of
defects within the mobility gap, and on the fluctuations of the Madelung
potential, where the disorder manifests itself most prominently. The
experimentally observed mismatch between a photoconductivity threshold of 9 eV
and the onset of the optical absorption around 7 eV is interpreted by the
picture of eigenstates localized by potential energy fluctuations in a mobility
gap of approximately 9 eV and a density of states that exhibits valence and
conduction band tails which are, even in the absence of defects, deeply located
within the former band gap.Comment: 21 pages of Latex, 5 eps figure
The Debye-Waller factor of liquid silica: Theory and simulation
We show that the prediction of mode-coupling theory for a model of a
network-forming strong glass-former correctly describes the wave-vector
dependence of the Debye-Waller factor. To obtain a good description it is
important to take into account the triplet correlation function c_3, which we
evaluate from a computer simulation. Our results support the possibility that
this theory is able to accurately describe the non-ergodicity parameters of
simple as well as of network-forming liquids.Comment: 5 pages of Latex, 3 figure
Properties of a continuous-random-network model for amorphous systems
We use a Monte Carlo bond-switching method to study systematically the
thermodynamic properties of a "continuous random network" model, the canonical
model for such amorphous systems as a-Si and a-SiO. Simulations show
first-order "melting" into an amorphous state, and clear evidence for a glass
transition in the supercooled liquid. The random-network model is also extended
to study heterogeneous structures, such as the interface between amorphous and
crystalline Si.Comment: Revtex file with 4 figure
Anisotropic Coarsening: Grain Shapes and Nonuniversal Persistence
We solve a coarsening system with small but arbitrary anisotropic surface
tension and interface mobility. The resulting size-dependent growth shapes are
significantly different from equilibrium microcrystallites, and have a
distribution of grain sizes different from isotropic theories. As an
application of our results, we show that the persistence decay exponent depends
on anisotropy and hence is nonuniversal.Comment: 4 pages (revtex), 2 eps figure
High frequency sound waves in vitreous silica
We report a molecular dynamics simulation study of the sound waves in
vitreous silica in the mesoscopic exchanged momentum range. The calculated
dynamical structure factors are in quantitative agreement with recent
experimental inelastic neutron and x-ray scattering data. The analysis of the
longitudinal and transverse current spectra allows to discriminate between
opposite interpretations of the existing experimental data in favour of the
propagating nature of the high frequency sound waves.Comment: 4 pages, Revtex, 4 ps figures; to be published in Phys. Rev. Lett.,
February 198
Canonical Solution of Classical Magnetic Models with Long-Range Couplings
We study the canonical solution of a family of classical spin
models on a generic -dimensional lattice; the couplings between two spins
decay as the inverse of their distance raised to the power , with
. The control of the thermodynamic limit requires the introduction of
a rescaling factor in the potential energy, which makes the model extensive but
not additive. A detailed analysis of the asymptotic spectral properties of the
matrix of couplings was necessary to justify the saddle point method applied to
the integration of functions depending on a diverging number of variables. The
properties of a class of functions related to the modified Bessel functions had
to be investigated. For given , and for any , and lattice
geometry, the solution is equivalent to that of the model, where the
dimensionality and the geometry of the lattice are irrelevant.Comment: Submitted for publication in Journal of Statistical Physic
Jammed Solids With Pins: Thresholds, Force Networks, And Elasticity
The role of fixed degrees of freedom in soft or granular matter systems has broad applicability and theoretical interest. Here we address questions of the geometrical role that a scaffolding of fixed particles plays in tuning the threshold volume fraction and force network in the vicinity of jamming. Our two-dimensional simulated system consists of soft particles and fixed âpins,â both of which harmonically repel overlaps. On the one hand, we find that many of the critical scalings associated with jamming in the absence of pins continue to hold in the presence of even dense pin latices. On the other hand, the presence of pins lowers the jamming threshold in a universal way at low pin densities and a geometry-dependent manner at high pin densities, producing packings with lower densities and fewer contacts between particles. The onset of strong lattice dependence coincides with the development of bond-orientational order. Furthermore, the presence of pins dramatically modifies the network of forces, with both unusually weak and unusually strong forces becoming more abundant. The spatial organization of this force network depends on pin geometry and is described in detail. Using persistent homology, we demonstrate that pins modify the topology of the network. Finally, we observe clear signatures of this developing bond-orientational order and broad force distribution in the elastic moduli which characterize the linear response of these packings to strain
Computer investigation of the energy landscape of amorphous silica
The multidimensional topography of the collective potential energy function
of a so-called strong glass former (silica) is analyzed by means of classical
molecular dynamics calculations. Features qualitatively similar to those of
fragile glasses are recovered at high temperatures : in particular an intrinsic
characteristic temperature K is evidenced above which the
system starts to investigate non-harmonic potential energy basins. It is shown
that the anharmonicities are essentially characterized by a roughness appearing
in the potential energy valleys explored by the system for temperatures above
.Comment: 5 pages; accepted for publication in PR
- âŠ