20 research outputs found

    Surface modification of multilayer graphene electrodes by local printing of platinum nanoparticles using spark ablation for neural interfacing

    Get PDF
    In this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP printing is performed as a post-process step to enhance the electrochemical characteristics of graphene electrodes. The NP-printed electrode shows significant improvements in impedance, charge storage capacity (CSC), and charge injection capacity (CIC), versus the equivalent electrodes without NPs. Specifically, electrodes with 40% NP surface density demonstrate 4.5 times lower impedance, 15 times higher CSC, and 4 times better CIC. Electrochemical stability, assessed via continuous cyclic voltammetry (CV) and voltage transient (VT) tests, indicated minimal deviations from the initial performance, while mechanical stability, assessed via ultrasonic vibration, is also improved after the NP printing. Importantly, NP surface densities up to 40% maintain the electrode optical transparency required for compatibility with optical imaging and optogenetics. These results demonstrate selective NP deposition and local modification of electrochemical properties in graphene electrodes for the first time, enabling the cohabitation of graphene electrodes with different electrochemical and optical characteristics on the same substrate for neural interfacing.</p

    Surface modification of multilayer graphene electrodes by local printing of platinum nanoparticles using spark ablation for neural interfacing

    Get PDF
    In this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP printing is performed as a post-process step to enhance the electrochemical characteristics of graphene electrodes. The NP-printed electrode shows significant improvements in impedance, charge storage capacity (CSC), and charge injection capacity (CIC), versus the equivalent electrodes without NPs. Specifically, electrodes with 40% NP surface density demonstrate 4.5 times lower impedance, 15 times higher CSC, and 4 times better CIC. Electrochemical stability, assessed via continuous cyclic voltammetry (CV) and voltage transient (VT) tests, indicated minimal deviations from the initial performance, while mechanical stability, assessed via ultrasonic vibration, is also improved after the NP printing. Importantly, NP surface densities up to 40% maintain the electrode optical transparency required for compatibility with optical imaging and optogenetics. These results demonstrate selective NP deposition and local modification of electrochemical properties in graphene electrodes for the first time, enabling the cohabitation of graphene electrodes with different electrochemical and optical characteristics on the same substrate for neural interfacing.</p

    Nanostructured Thermoelectric Films Synthesised by Spark Ablation and Their Oxidation Behaviour

    Get PDF
    Reducing the thermal conductivity of thermoelectric materials has been a field of intense research to improve the efficiency of thermoelectric devices. One approach is to create a nanostructured thermoelectric material that has a low thermal conductivity due to its high number of grain boundaries or voids, which scatter phonons. Here, we present a new method based on spark ablation nanoparticle generation to create nanostructured thermoelectric materials, demonstrated using Bi2Te3. The lowest achieved thermal conductivity was &lt;0.1 W m (Formula presented.) K (Formula presented.) at room temperature with a mean nanoparticle size of (Formula presented.) nm and a porosity of 44%. This is comparable to the best published nanostructured Bi2Te3 films. Oxidation is also shown to be a major issue for nanoporous materials such as the one here, illustrating the importance of immediate, air-tight packaging of such materials after synthesis and deposition.</p

    Mass measurement of graphene using quartz crystal microbalances

    Full text link
    Current wafer-scale fabrication methods for graphene-based electronics and sensors involve the transfer of single-layer graphene by a support polymer. This often leaves some polymer residue on the graphene, which can strongly impact its electronic, thermal, and mechanical resonance properties. To assess the cleanliness of graphene fabrication methods, it is thus of considerable interest to quantify the amount of contamination on top of the graphene. Here, we present a methodology for direct measurement of the mass of the graphene sheet using quartz crystal microbalances (QCM). By monitoring the QCM resonance frequency during removal of graphene in an oxygen plasma, the total mass of the graphene and contamination is determined with sub-graphene-monolayer accuracy. Since the etch-rate of the contamination is higher than that of graphene, quantitative measurements of the mass of contaminants below, on top, and between graphene layers are obtained. We find that polymer-based dry transfer methods can increase the mass of a graphene sheet by a factor of 10. The presented mass measurement method is conceptually straightforward to interpret and can be used for standardized testing of graphene transfer procedures in order to improve the quality of graphene devices in future applications

    Low-friction, wear-resistant, and electrically homogeneous multilayer graphene grown by chemical vapor deposition on molybdenum

    Get PDF
    Chemical vapour deposition (CVD) is a promising method for producing large-scale graphene (Gr). Nevertheless, microscopic inhomogeneity of Gr grown on traditional metal substrates such as copper or nickel results in a spatial variation of Gr properties due to long wrinkles formed when the metal substrate shrinks during the cooling part of the production cycle. Recently, molybdenum (Mo) has emerged as an alternative substrate for CVD growth of Gr, mainly due to a better matching of the thermal expansion coefficient of the substrate and Gr. We investigate the quality of multilayer Gr grown on Mo and the relation between Gr morphology and nanoscale mechanical and electrical properties, and spatial homogeneity of these parameters. With atomic force microscopy (AFM) based scratching, Kelvin probe force microscopy, and conductive AFM, we measure friction and wear, surface potential, and local conductivity, respectively. We find that Gr grown on Mo is free of large wrinkles that are common with growth on other metals, although it contains a dense network of small wrinkles. We demonstrate that as a result of this unique and favorable morphology, the Gr studied here has low friction, high wear resistance, and excellent homogeneity of electrical surface potential and conductivity.This is peer-reviewed version of the artcle: B. Vasić, U. Ralević, K.C. Zobenica, M.M. Smiljanić, R. Gajić, M. Spasenović, S. Vollebregt, Low-friction, wear-resistant, and electrically homogeneous multilayer graphene grown by chemical vapor deposition on molybdenum, Appl. Surf. Sci. (2019) 144792. [https://doi.org/10.1016/j.apsusc.2019.144792]Published version: [http://cer.ihtm.bg.ac.rs/handle/123456789/3347

    Ultra-sensitive graphene membranes for microphone applications

    Get PDF
    Microphones exploit the motion of suspended membranes to detect sound waves. Since the microphone performance can be improved by reducing the thickness and mass of its sensing membrane, graphene-based microphones are expected to outperform state-of-the-art microelectromechanical (MEMS) microphones and allow further miniaturization of the device. Here, we present a laser vibrometry study of the acoustic response of suspended multilayer graphene membranes for microphone applications. We address performance parameters relevant for acoustic sensing, including mechanical sensitivity, limit of detection and nonlinear distortion, and discuss the trade-offs and limitations in the design of graphene microphones. We demonstrate superior mechanical sensitivities of the graphene membranes, reaching more than 2 orders of magnitude higher compliances than commercial MEMS devices, and report a limit of detection as low as 15 dBSPL, which is 10 - 15 dB lower than that featured by current MEMS microphones.Comment: 34 pages, 6 figures, 7 supplementary figure

    Optimization of multilayer graphene-based gas sensors by ultraviolet photoactivation

    Get PDF
    Nitrogen dioxide (NO2) is a potential hazard to human health at low concentrations, below one part per million (ppm). NO2 can be monitored using gas sensors based on multi-layered graphene operating at ambient temperature. However, reliable detection of concentrations on the order of parts per million and lower is hindered by partial recovery and lack of reproducibility of the sensors after exposure. We show how to overcome these longstanding problems using ultraviolet (UV) light. When exposed to NO2, the sensor response is enhanced by 290 % − 550 % under a 275 nm wavelength light emitting diode irradiation. Furthermore, the sensor’s initial state is completely restored after exposure to the target gas. UV irradiation at 68 W/m2 reduces the NO2 detection limit to 30 parts per billion (ppb) at room temperature. We investigated sensor performance optimization for UV irradiation with different power densities and target gases, such as carbon oxide and ammonia. Improved sensitivity, recovery, and reproducibility of UV-assisted graphene-based gas sensors make them suitable for widespread environmental applications

    A high aspect ratio surface micromachined accelerometer based on a SiC-CNT composite material

    No full text
    Abstract Silicon carbide (SiC) is recognized as an excellent material for microelectromechanical systems (MEMS), especially those operating in challenging environments, such as high temperature, high radiation, and corrosive environments. However, SiC bulk micromachining is still a challenge, which hinders the development of complex SiC MEMS. To address this problem, we present the use of a carbon nanotube (CNT) array coated with amorphous SiC (a-SiC) as an alternative composite material to enable high aspect ratio (HAR) surface micromachining. By using a prepatterned catalyst layer, a HAR CNT array can be grown as a structural template and then densified by uniformly filling the CNT bundle with LPCVD a-SiC. The electrical properties of the resulting SiC-CNT composite were characterized, and the results indicated that the electrical resistivity was dominated by the CNTs. To demonstrate the use of this composite in MEMS applications, a capacitive accelerometer was designed, fabricated, and measured. The fabrication results showed that the composite is fully compatible with the manufacturing of surface micromachining devices. The Young’s modulus of the composite was extracted from the measured spring constant, and the results show a great improvement in the mechanical properties of the CNTs after coating with a-SiC. The accelerometer was electrically characterized, and its functionality was confirmed using a mechanical shaker
    corecore